Show simple item record

contributor authorM. D. Durbin
contributor authorV. R. Katta
contributor authorM. D. Vangsness
contributor authorD. R. Ballal
date accessioned2017-05-08T23:50:07Z
date available2017-05-08T23:50:07Z
date copyrightApril, 1996
date issued1996
identifier issn1528-8919
identifier otherJETPEZ-26751#308_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/116938
description abstractA prime requirement in the design of a modern gas turbine combustor is good combustion stability, especially near lean blowout (LBO), to ensure an adequate stability margin. For an aeroengine, combustor blow-off limits are encountered during low engine speeds at high altitudes over a range of flight Mach numbers. For an industrial combustor, requirements of ultralow NOx emissions coupled with high combustion efficiency demand operation at or close to LBO. In this investigation, a step swirl combustor (SSC) was designed to reproduce the swirling flow pattern present in the vicinity of the fuel injector located in the primary zone of a gas turbine combustor. Different flame shapes, structure, and location were observed and detailed experimental measurements and numerical computations were performed. It was found that certain combinations of outer and inner swirling air flows produce multiple attached flames, aflame with a single attached structure just above the fuel injection tube, and finally for higher inner swirl velocity, the flame lifts from the fuel tube and is stabilized by the inner recirculation zone. The observed difference in LBO between co- and counterswirl configurations is primarily a function of how the flame stabilizes, i.e., attached versus lifted. A turbulent combustion model correctly predicts the attached flame location(s), development of inner recirculation zone, a dimple-shaped flame structure, the flame lift-off height, and radial profiles of mean temperature, axial velocity, and tangential velocity at different axial locations. Finally, the significance and applications of anchored and lifted flames to combustor stability and LBO in practical gas turbine combustors are discussed.
publisherThe American Society of Mechanical Engineers (ASME)
titleStudy of Flame Stability in a Step Swirl Combustor
typeJournal Paper
journal volume118
journal issue2
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.2816592
journal fristpage308
journal lastpage315
identifier eissn0742-4795
keywordsStability
keywordsCombustion chambers
keywordsFlames
keywordsGas turbines
keywordsCombustion
keywordsFuels
keywordsSwirling flow
keywordsFuel injectors
keywordsFlight
keywordsEmissions
keywordsComputation
keywordsDesign
keywordsTurbulence
keywordsEngines
keywordsAir flow
keywordsMeasurement
keywordsMach number
keywordsTemperature AND Shapes
treeJournal of Engineering for Gas Turbines and Power:;1996:;volume( 118 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record