| contributor author | S. Consonni | |
| contributor author | E. D. Larson | |
| date accessioned | 2017-05-08T23:50:02Z | |
| date available | 2017-05-08T23:50:02Z | |
| date copyright | July, 1996 | |
| date issued | 1996 | |
| identifier issn | 1528-8919 | |
| identifier other | JETPEZ-26756#507_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/116897 | |
| description abstract | Gas turbines fueled by integrated biomass gasifiers are a promising option for base load electricity generation from a renewable resource. Aeroderivative turbines, which are characterized by high efficiencies at smaller scales, are of special interest because transportation costs for biomass constrain biomass conversion facilities to relatively modest scales. Commercial development activities and major technological issues associated with biomass integrated-gasifier/gas turbine (BIG/GT) combined cycle power generation are reviewed in Part A of this two-part paper. Also, the computational model and the assumptions used to predict the overall performance of alternative BIG/GT cycles are outlined. The model evaluates appropriate value of key parameters (turbomachinery efficiencies, gas turbine cooling flows, steam production in the heat recovery steam generator, etc.) and then carries out energy, mass, and chemical species balances for each plant component, with iterations to insure whole-plant consistency. Part B of the paper presents detailed comparisons of the predicted performance of systems now being proposed for commercial installation in the 25–30 MWe power output range, as well as predictions for advanced combined cycle configurations (including with intercooling) with outputs from 22 to 75 MWe . Finally, an economic assessment is presented, based on preliminary capital cost estimates for BIG/GT combined cycles. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Biomass-Gasifier/Aeroderivative Gas Turbine Combined Cycles: Part A—Technologies and Performance Modeling | |
| type | Journal Paper | |
| journal volume | 118 | |
| journal issue | 3 | |
| journal title | Journal of Engineering for Gas Turbines and Power | |
| identifier doi | 10.1115/1.2816677 | |
| journal fristpage | 507 | |
| journal lastpage | 515 | |
| identifier eissn | 0742-4795 | |
| keywords | Gas turbines | |
| keywords | Modeling | |
| keywords | Cycles | |
| keywords | Biomass | |
| keywords | Industrial plants | |
| keywords | Steam | |
| keywords | Turbomachinery | |
| keywords | Heat recovery steam generators | |
| keywords | Energy generation | |
| keywords | Transportation systems | |
| keywords | Turbines | |
| keywords | Flow (Dynamics) | |
| keywords | Cooling | |
| keywords | Stress AND Project cost estimation | |
| tree | Journal of Engineering for Gas Turbines and Power:;1996:;volume( 118 ):;issue: 003 | |
| contenttype | Fulltext | |