YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Scaling of the Visible Lengths of Jet Diffusion Flames

    Source: Journal of Energy Resources Technology:;1996:;volume( 118 ):;issue: 002::page 128
    Author:
    X. Li
    DOI: 10.1115/1.2792703
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Length of jet diffusion flames is of direct importance in many industrial processes and is analyzed by applying scaling method directly to the governing partial differential equations. It is shown that for jet-momentum-dominated diffusion flames, when the buoyancy effects are neglected, the flame length normalized by the burner exit diameter increases linearly with the Reynolds number at the burner exit in the laminar burning regime and decreases in inverse proportion to the Reynolds number in the transitional regime. For turbulent diffusion flames, the normalized flame lengths are independent of the burner exit flow conditions. It is further found that for vertical upward flames, the buoyancy effect increases the flame length in the laminar and transitional regime and reduces the length in the turbulent regime; while for vertical downward flames, the buoyancy effect decreases the flame length in the laminar and transitional regime and increases the length in the turbulent regime, provided that jet momentum is dominated, and there is no flame spreading out and then burning upward like a downward-facing pool fire. Hence, for turbulent flames the flame lengths depend on the Froude number, Fr, and increase (or decrease) slightly as Fr increases for upward (or downward) flames. By comparison, it is found that the foregoing theoretical results are in good agreement with the experimental observations reported in literature.
    keyword(s): Diffusion flames ,
    • Download: (734.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Scaling of the Visible Lengths of Jet Diffusion Flames

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/116835
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorX. Li
    date accessioned2017-05-08T23:49:55Z
    date available2017-05-08T23:49:55Z
    date copyrightJune, 1996
    date issued1996
    identifier issn0195-0738
    identifier otherJERTD2-26466#128_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/116835
    description abstractLength of jet diffusion flames is of direct importance in many industrial processes and is analyzed by applying scaling method directly to the governing partial differential equations. It is shown that for jet-momentum-dominated diffusion flames, when the buoyancy effects are neglected, the flame length normalized by the burner exit diameter increases linearly with the Reynolds number at the burner exit in the laminar burning regime and decreases in inverse proportion to the Reynolds number in the transitional regime. For turbulent diffusion flames, the normalized flame lengths are independent of the burner exit flow conditions. It is further found that for vertical upward flames, the buoyancy effect increases the flame length in the laminar and transitional regime and reduces the length in the turbulent regime; while for vertical downward flames, the buoyancy effect decreases the flame length in the laminar and transitional regime and increases the length in the turbulent regime, provided that jet momentum is dominated, and there is no flame spreading out and then burning upward like a downward-facing pool fire. Hence, for turbulent flames the flame lengths depend on the Froude number, Fr, and increase (or decrease) slightly as Fr increases for upward (or downward) flames. By comparison, it is found that the foregoing theoretical results are in good agreement with the experimental observations reported in literature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Scaling of the Visible Lengths of Jet Diffusion Flames
    typeJournal Paper
    journal volume118
    journal issue2
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.2792703
    journal fristpage128
    journal lastpage133
    identifier eissn1528-8994
    keywordsDiffusion flames
    treeJournal of Energy Resources Technology:;1996:;volume( 118 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian