YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermal Destruction of Solid Wastes

    Source: Journal of Energy Resources Technology:;1996:;volume( 118 ):;issue: 003::page 187
    Author:
    A. K. Gupta
    DOI: 10.1115/1.2793861
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The United States generates the largest amount of solid waste per person in the world. The old practice of direct landfilling and storage is receiving greater public resistance and is attributing to the search for alternative disposal methods. The evergrowing problem of solid wastes requires environmentally benign and good public acceptance for the safe and ultimate disposal of the various kinds of solid wastes. Incineration and various kinds of mass burn-type systems have been used to reduce the volume and mass of the wastes, which can be characterized by their operational temperature. In all types of incineration systems, different kinds of gas clean-up devices are used to meet the local, state, and federal regulations for the gases before being released into the environment. A major concern over these systems have been in the by-products produced from these systems during their normal design and off-design point of operation. Indeed, the by-products generated from some incineration systems, under certain operational conditions, can be a health hazard and the solid residue may be leachable. Recent trends in advanced thermal destruction systems are described which can destroy the solid waste to the molecular level. Advanced systems can be designed to meet almost any emission standards. The use of oxygen-enriched air in place of air for the combustion of gases released from the solid waste reduces the amount of effluent gas, and, hence, the reduced size and cost of the gas clean-up system. The use of an excess enthalpy system offers attractive benefits in which the energy released from the waste is recycled back into the system under controlled conditions with the final desired objectives of reduced emissions, higher efficiency, and lower costs. Thermal destruction of solid wastes using advanced techniques makes good technical, environmental, economical, and human health and safety. The issues concerning recyclability, life cycle integration, and health effects from incineration are only expected to grow in the future.
    keyword(s): Solid wastes , Design , Gases , Emissions , Cycles , Enthalpy , Health and safety , Oxygen , Regulations , Storage , Electrical resistance , Temperature AND Combustion ,
    • Download: (871.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermal Destruction of Solid Wastes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/116817
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorA. K. Gupta
    date accessioned2017-05-08T23:49:53Z
    date available2017-05-08T23:49:53Z
    date copyrightSeptember, 1996
    date issued1996
    identifier issn0195-0738
    identifier otherJERTD2-26467#187_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/116817
    description abstractThe United States generates the largest amount of solid waste per person in the world. The old practice of direct landfilling and storage is receiving greater public resistance and is attributing to the search for alternative disposal methods. The evergrowing problem of solid wastes requires environmentally benign and good public acceptance for the safe and ultimate disposal of the various kinds of solid wastes. Incineration and various kinds of mass burn-type systems have been used to reduce the volume and mass of the wastes, which can be characterized by their operational temperature. In all types of incineration systems, different kinds of gas clean-up devices are used to meet the local, state, and federal regulations for the gases before being released into the environment. A major concern over these systems have been in the by-products produced from these systems during their normal design and off-design point of operation. Indeed, the by-products generated from some incineration systems, under certain operational conditions, can be a health hazard and the solid residue may be leachable. Recent trends in advanced thermal destruction systems are described which can destroy the solid waste to the molecular level. Advanced systems can be designed to meet almost any emission standards. The use of oxygen-enriched air in place of air for the combustion of gases released from the solid waste reduces the amount of effluent gas, and, hence, the reduced size and cost of the gas clean-up system. The use of an excess enthalpy system offers attractive benefits in which the energy released from the waste is recycled back into the system under controlled conditions with the final desired objectives of reduced emissions, higher efficiency, and lower costs. Thermal destruction of solid wastes using advanced techniques makes good technical, environmental, economical, and human health and safety. The issues concerning recyclability, life cycle integration, and health effects from incineration are only expected to grow in the future.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermal Destruction of Solid Wastes
    typeJournal Paper
    journal volume118
    journal issue3
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.2793861
    journal fristpage187
    journal lastpage192
    identifier eissn1528-8994
    keywordsSolid wastes
    keywordsDesign
    keywordsGases
    keywordsEmissions
    keywordsCycles
    keywordsEnthalpy
    keywordsHealth and safety
    keywordsOxygen
    keywordsRegulations
    keywordsStorage
    keywordsElectrical resistance
    keywordsTemperature AND Combustion
    treeJournal of Energy Resources Technology:;1996:;volume( 118 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian