A Numerical Simulation of a Brush Seal Section and Some Experimental ResultsSource: Journal of Turbomachinery:;1995:;volume( 117 ):;issue: 001::page 190DOI: 10.1115/1.2835637Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The brush seal technology represents quite a promising advance in the effort of construction of more efficient, and possibly smaller size engines. Conclusions of recent workshops determined that while the brush seal works well, there is a need to improve its performance characteristics. The considerable amount of experimental work performed to date has indicated the importance of the local flow phenomena in the global sealing process performance of the brush (Braun et al., 1990a, 1991b, 1992; Hendricks et al., 1991a). The distributed flow and pressure fields are thus of vital importance for the prediction of the possible sudden failure of the brush seal under unexpected local “pressure hikes.” It is in this context that the authors developed a numerical, two-dimensional time accurate dependent formulation of the Navier–Stokes equations with constant properties, and included the effects of inertia, viscous, and pressure terms. The algorithm is applied to a set of noncompliant multirow, multicolumn pin configurations that are similar to the ones found in an idealized brush seal configuration. While the numerical parametric investigation aims at establishing the occurrence of major flow patterns and associated pressure maps, the experimental portion of the paper is aimed at gaining further insight into the relevant flow structures, and thus guiding the development of the mathematical and numerical models.
keyword(s): Computer simulation , Pressure , Flow (Dynamics) , Workshops (Work spaces) , Inertia (Mechanics) , Engines , Construction , Sealing (Process) , Navier-Stokes equations , Algorithms , Failure AND Performance characterization ,
|
Collections
Show full item record
contributor author | M. J. Braun | |
contributor author | V. V. Kudriavtsev | |
date accessioned | 2017-05-08T23:48:41Z | |
date available | 2017-05-08T23:48:41Z | |
date copyright | January, 1995 | |
date issued | 1995 | |
identifier issn | 0889-504X | |
identifier other | JOTUEI-28642#190_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/116186 | |
description abstract | The brush seal technology represents quite a promising advance in the effort of construction of more efficient, and possibly smaller size engines. Conclusions of recent workshops determined that while the brush seal works well, there is a need to improve its performance characteristics. The considerable amount of experimental work performed to date has indicated the importance of the local flow phenomena in the global sealing process performance of the brush (Braun et al., 1990a, 1991b, 1992; Hendricks et al., 1991a). The distributed flow and pressure fields are thus of vital importance for the prediction of the possible sudden failure of the brush seal under unexpected local “pressure hikes.” It is in this context that the authors developed a numerical, two-dimensional time accurate dependent formulation of the Navier–Stokes equations with constant properties, and included the effects of inertia, viscous, and pressure terms. The algorithm is applied to a set of noncompliant multirow, multicolumn pin configurations that are similar to the ones found in an idealized brush seal configuration. While the numerical parametric investigation aims at establishing the occurrence of major flow patterns and associated pressure maps, the experimental portion of the paper is aimed at gaining further insight into the relevant flow structures, and thus guiding the development of the mathematical and numerical models. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A Numerical Simulation of a Brush Seal Section and Some Experimental Results | |
type | Journal Paper | |
journal volume | 117 | |
journal issue | 1 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.2835637 | |
journal fristpage | 190 | |
journal lastpage | 202 | |
identifier eissn | 1528-8900 | |
keywords | Computer simulation | |
keywords | Pressure | |
keywords | Flow (Dynamics) | |
keywords | Workshops (Work spaces) | |
keywords | Inertia (Mechanics) | |
keywords | Engines | |
keywords | Construction | |
keywords | Sealing (Process) | |
keywords | Navier-Stokes equations | |
keywords | Algorithms | |
keywords | Failure AND Performance characterization | |
tree | Journal of Turbomachinery:;1995:;volume( 117 ):;issue: 001 | |
contenttype | Fulltext |