YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Universal Bounds for Overall Properties of Linear and Nonlinear Heterogeneous Solids

    Source: Journal of Engineering Materials and Technology:;1995:;volume( 117 ):;issue: 004::page 412
    Author:
    Sia Nemat-Nasser
    ,
    Muneo Hori
    DOI: 10.1115/1.2804735
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: For a sample of a general heterogeneous nonlinearly elastic material, it is shown that, among all consistent boundary data which yield the same overall average strain (stress), the strain (stress) field produced by uniform boundary tractions (linear boundary displacements), renders the elastic strain (complementary strain) energy an absolute minimum. Similar results are obtained when the material of the composite is viscoplastic. Based on these results, universal bounds are presented for the overall elastic parameters of a general, possibly finite-sized, sample of heterogeneous materials with arbitrary microstructures, subjected to any consistent boundary data with a common prescribed average strain or stress. Statistical homogeneity and isotropy are neither required nor excluded. Based on these general results, computable bounds are developed for the overall stress and strain (strain-rate) potentials of solids of any shape and inhomogeneity, subjected to any set of consistent boundary data. The bounds can be improved by incorporating additional material and geometric data specific to the given finite heterogeneous solid. Any numerical (finite-element or boundary-element) or analytical solution method can be used to analyze any subregion under uniform boundary tractions or linear boundary displacements, and the results can be incorporated into the procedure outlined here, leading to exact bounds. These bounds are not based on the equivalent homogenized reference solid (discussed in Sections 3 and 4). They may remain finite even when cavities or rigid inclusions are present. Complementary to the above-mentioned results, for linear cases, eigenstrains and eigenstresses are used to homogenize the solid, and general exact bounds are developed. In the absence of statistical homogeneity, the only requirement is that the overall shape of the sample be either parallelepipedic (rectangular or oblique) or ellipsoidal, though the size and relative dimensions of the sample are arbitrary. Then, exact analytically computable, improvable bounds are developed for the overall moduli and compliances, without any further assumptions or approximations. Bounds for two elastic parameters are shown to be independent of the number of inhomogeneity phases, and their sizes, shapes, or distribution. These bounds are the same for both parallelepipedic and ellipsoidal overall sample geometries, as well as for the statistically homogeneous and isotropic distribution of inhomogeneities. These bounds are therefore universal. The same formalism is used to develop universal bounds for the overall non-mechanical (such as thermal, diffusional, or electrostatic) properties of heterogeneous materials.
    keyword(s): Solids , Stress , Shapes , Composite materials , Dimensions , Boundary element methods , Finite element analysis , Approximation , Cavities AND Isotropy ,
    • Download: (2.391Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Universal Bounds for Overall Properties of Linear and Nonlinear Heterogeneous Solids

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/115375
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorSia Nemat-Nasser
    contributor authorMuneo Hori
    date accessioned2017-05-08T23:47:18Z
    date available2017-05-08T23:47:18Z
    date copyrightOctober, 1995
    date issued1995
    identifier issn0094-4289
    identifier otherJEMTA8-26974#412_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/115375
    description abstractFor a sample of a general heterogeneous nonlinearly elastic material, it is shown that, among all consistent boundary data which yield the same overall average strain (stress), the strain (stress) field produced by uniform boundary tractions (linear boundary displacements), renders the elastic strain (complementary strain) energy an absolute minimum. Similar results are obtained when the material of the composite is viscoplastic. Based on these results, universal bounds are presented for the overall elastic parameters of a general, possibly finite-sized, sample of heterogeneous materials with arbitrary microstructures, subjected to any consistent boundary data with a common prescribed average strain or stress. Statistical homogeneity and isotropy are neither required nor excluded. Based on these general results, computable bounds are developed for the overall stress and strain (strain-rate) potentials of solids of any shape and inhomogeneity, subjected to any set of consistent boundary data. The bounds can be improved by incorporating additional material and geometric data specific to the given finite heterogeneous solid. Any numerical (finite-element or boundary-element) or analytical solution method can be used to analyze any subregion under uniform boundary tractions or linear boundary displacements, and the results can be incorporated into the procedure outlined here, leading to exact bounds. These bounds are not based on the equivalent homogenized reference solid (discussed in Sections 3 and 4). They may remain finite even when cavities or rigid inclusions are present. Complementary to the above-mentioned results, for linear cases, eigenstrains and eigenstresses are used to homogenize the solid, and general exact bounds are developed. In the absence of statistical homogeneity, the only requirement is that the overall shape of the sample be either parallelepipedic (rectangular or oblique) or ellipsoidal, though the size and relative dimensions of the sample are arbitrary. Then, exact analytically computable, improvable bounds are developed for the overall moduli and compliances, without any further assumptions or approximations. Bounds for two elastic parameters are shown to be independent of the number of inhomogeneity phases, and their sizes, shapes, or distribution. These bounds are the same for both parallelepipedic and ellipsoidal overall sample geometries, as well as for the statistically homogeneous and isotropic distribution of inhomogeneities. These bounds are therefore universal. The same formalism is used to develop universal bounds for the overall non-mechanical (such as thermal, diffusional, or electrostatic) properties of heterogeneous materials.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUniversal Bounds for Overall Properties of Linear and Nonlinear Heterogeneous Solids
    typeJournal Paper
    journal volume117
    journal issue4
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.2804735
    journal fristpage412
    journal lastpage432
    identifier eissn1528-8889
    keywordsSolids
    keywordsStress
    keywordsShapes
    keywordsComposite materials
    keywordsDimensions
    keywordsBoundary element methods
    keywordsFinite element analysis
    keywordsApproximation
    keywordsCavities AND Isotropy
    treeJournal of Engineering Materials and Technology:;1995:;volume( 117 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian