YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stability of Nonconservatively Elastic Systems Using Eigenvalue Sensitivity

    Source: Journal of Vibration and Acoustics:;1994:;volume( 116 ):;issue: 002::page 168
    Author:
    Lien-Wen Chen
    ,
    Der-Ming Ku
    DOI: 10.1115/1.2930408
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The stability of a cantilever column, carrying a concentrated mass at the free end and resting on an elastic foundation of the Winkler-type, subjected to uniformly distributed in-plane follower forces is studied by “Timoshenko beam theory” finite elements. In order to more quickly and efficiently obtain the critical load for such a nonconservative system, a simple and cost-effective numerical technique which utilizes the eigenvalue sensitivity with respect to the follower force is introduced instead of the conventional trial-and-error technique. The high accuracy and rapid rate of convergence through the combination of the present finite element model and the solution technique are demonstrated with the numerical example given. The influence of some system parameters on the critical load is also discussed.
    keyword(s): Stability , Eigenvalues , Force , Stress , Finite element analysis , Cantilevers , Errors AND Finite element model ,
    • Download: (530.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stability of Nonconservatively Elastic Systems Using Eigenvalue Sensitivity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/114659
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorLien-Wen Chen
    contributor authorDer-Ming Ku
    date accessioned2017-05-08T23:46:03Z
    date available2017-05-08T23:46:03Z
    date copyrightApril, 1994
    date issued1994
    identifier issn1048-9002
    identifier otherJVACEK-28814#168_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/114659
    description abstractThe stability of a cantilever column, carrying a concentrated mass at the free end and resting on an elastic foundation of the Winkler-type, subjected to uniformly distributed in-plane follower forces is studied by “Timoshenko beam theory” finite elements. In order to more quickly and efficiently obtain the critical load for such a nonconservative system, a simple and cost-effective numerical technique which utilizes the eigenvalue sensitivity with respect to the follower force is introduced instead of the conventional trial-and-error technique. The high accuracy and rapid rate of convergence through the combination of the present finite element model and the solution technique are demonstrated with the numerical example given. The influence of some system parameters on the critical load is also discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStability of Nonconservatively Elastic Systems Using Eigenvalue Sensitivity
    typeJournal Paper
    journal volume116
    journal issue2
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2930408
    journal fristpage168
    journal lastpage172
    identifier eissn1528-8927
    keywordsStability
    keywordsEigenvalues
    keywordsForce
    keywordsStress
    keywordsFinite element analysis
    keywordsCantilevers
    keywordsErrors AND Finite element model
    treeJournal of Vibration and Acoustics:;1994:;volume( 116 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian