YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Frequency Spectra of Laminated Piezoelectric Cylinders

    Source: Journal of Vibration and Acoustics:;1994:;volume( 116 ):;issue: 003::page 364
    Author:
    J. C.-T. Siao
    ,
    S. B. Dong
    ,
    J. Song
    DOI: 10.1115/1.2930437
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A finite-element method is presented for determining the vibrational characteristics of a circular cylinder composed of bonded piezoelectric layers. Finite-element modeling occurs in the radial direction only using quadratic polynomials and the variationally derived partial differential equations are functions of the hoop and axial coordinates (θ, z) and time t. Using solution form Q exp {i(ξz + nθ + ωt)}, with Q as the nodal amplitudes, leads to an algebraic eigensystem where any one of the three parameters (n, ξ, ω), the circumferential or axial wave number or natural frequency, can act as the eigenvalue. Integer values always are assigned to n, leaving two possible eigenvalue problems. With ω as the eigenvalue and real values assigned to ξ, the solutions represent propagating waves or harmonic standing vibrations in an infinite cylinder. When ξ is the eigenvalue and real values assigned to ω, this eigensystem admits both real and complex eigendata. Real ξ’s represent propagating waves or harmonic standing vibrations as noted before. Complex conjugate pairs of ξ’s describe end vibrations, which arise when an incident wave impinges upon a free end of a cylindrical bar. They are standing waves whose amplitudes decay sinusoidally or exponentially from the free end into the interior. Two examples are given to illustrate the method of analysis, viz., a solid piezoelectric cylinder of PZT-4 ceramic material and a two-layer cylinder of PZT-4 covering an isotropic material.
    keyword(s): Spectra (Spectroscopy) , Cylinders , Eigenvalues , Waves , Vibration , Circular cylinders , Ceramics , Standing waves , Finite element methods , Finite element analysis , Modeling , Functions , Partial differential equations AND Polynomials ,
    • Download: (598.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Frequency Spectra of Laminated Piezoelectric Cylinders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/114648
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorJ. C.-T. Siao
    contributor authorS. B. Dong
    contributor authorJ. Song
    date accessioned2017-05-08T23:46:02Z
    date available2017-05-08T23:46:02Z
    date copyrightJuly, 1994
    date issued1994
    identifier issn1048-9002
    identifier otherJVACEK-28815#364_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/114648
    description abstractA finite-element method is presented for determining the vibrational characteristics of a circular cylinder composed of bonded piezoelectric layers. Finite-element modeling occurs in the radial direction only using quadratic polynomials and the variationally derived partial differential equations are functions of the hoop and axial coordinates (θ, z) and time t. Using solution form Q exp {i(ξz + nθ + ωt)}, with Q as the nodal amplitudes, leads to an algebraic eigensystem where any one of the three parameters (n, ξ, ω), the circumferential or axial wave number or natural frequency, can act as the eigenvalue. Integer values always are assigned to n, leaving two possible eigenvalue problems. With ω as the eigenvalue and real values assigned to ξ, the solutions represent propagating waves or harmonic standing vibrations in an infinite cylinder. When ξ is the eigenvalue and real values assigned to ω, this eigensystem admits both real and complex eigendata. Real ξ’s represent propagating waves or harmonic standing vibrations as noted before. Complex conjugate pairs of ξ’s describe end vibrations, which arise when an incident wave impinges upon a free end of a cylindrical bar. They are standing waves whose amplitudes decay sinusoidally or exponentially from the free end into the interior. Two examples are given to illustrate the method of analysis, viz., a solid piezoelectric cylinder of PZT-4 ceramic material and a two-layer cylinder of PZT-4 covering an isotropic material.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFrequency Spectra of Laminated Piezoelectric Cylinders
    typeJournal Paper
    journal volume116
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2930437
    journal fristpage364
    journal lastpage370
    identifier eissn1528-8927
    keywordsSpectra (Spectroscopy)
    keywordsCylinders
    keywordsEigenvalues
    keywordsWaves
    keywordsVibration
    keywordsCircular cylinders
    keywordsCeramics
    keywordsStanding waves
    keywordsFinite element methods
    keywordsFinite element analysis
    keywordsModeling
    keywordsFunctions
    keywordsPartial differential equations AND Polynomials
    treeJournal of Vibration and Acoustics:;1994:;volume( 116 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian