YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Geometric Elimination of Constraint Violations in Numerical Simulation of Lagrangian Equations

    Source: Journal of Mechanical Design:;1994:;volume( 116 ):;issue: 004::page 1058
    Author:
    S. Yoon
    ,
    R. M. Howe
    ,
    D. T. Greenwood
    DOI: 10.1115/1.2919487
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Conventional holonomic or nonholonomic constraints are defined as geometric constraints. The total enregy of a dynamic system can be treated as a constrained quantity for the purpose of accurate numerical simulation. In the simulation of Lagrangian equations of motion with constraint equations, the Geometric Elimination Method turns out to be more effective in controlling constraint violations than any conventional methods, including Baumgarte’s Constraint Violation Stabilization Method (CVSM). At each step, this method first goes through the numerical integration process without correction to obtain updated values of the state variables. These values are then used in a gradient-based procedure to eliminate the geometric and energy errors simultaneously before processing to the next step. For small step size, this procedure is stable and very accurate.
    keyword(s): Computer simulation , Equations , Errors , Gradients , Simulation , Equations of motion AND Dynamic systems ,
    • Download: (664.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Geometric Elimination of Constraint Violations in Numerical Simulation of Lagrangian Equations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/113986
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorS. Yoon
    contributor authorR. M. Howe
    contributor authorD. T. Greenwood
    date accessioned2017-05-08T23:44:53Z
    date available2017-05-08T23:44:53Z
    date copyrightDecember, 1994
    date issued1994
    identifier issn1050-0472
    identifier otherJMDEDB-27622#1058_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/113986
    description abstractConventional holonomic or nonholonomic constraints are defined as geometric constraints. The total enregy of a dynamic system can be treated as a constrained quantity for the purpose of accurate numerical simulation. In the simulation of Lagrangian equations of motion with constraint equations, the Geometric Elimination Method turns out to be more effective in controlling constraint violations than any conventional methods, including Baumgarte’s Constraint Violation Stabilization Method (CVSM). At each step, this method first goes through the numerical integration process without correction to obtain updated values of the state variables. These values are then used in a gradient-based procedure to eliminate the geometric and energy errors simultaneously before processing to the next step. For small step size, this procedure is stable and very accurate.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGeometric Elimination of Constraint Violations in Numerical Simulation of Lagrangian Equations
    typeJournal Paper
    journal volume116
    journal issue4
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.2919487
    journal fristpage1058
    journal lastpage1064
    identifier eissn1528-9001
    keywordsComputer simulation
    keywordsEquations
    keywordsErrors
    keywordsGradients
    keywordsSimulation
    keywordsEquations of motion AND Dynamic systems
    treeJournal of Mechanical Design:;1994:;volume( 116 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian