YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling of Linear Viscoelastic Space Structures

    Source: Journal of Vibration and Acoustics:;1993:;volume( 115 ):;issue: 001::page 103
    Author:
    D. J. McTavish
    ,
    P. C. Hughes
    DOI: 10.1115/1.2930302
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The GHM Method provides viscoelastic finite elements derived from the commonly used elastic finite elements. Moreover, these GHM elements are used directly and conveniently in second-order structural models jut like their elastic counterparts. The forms of the GHM element matrices preserve the definiteness properties usually associated with finite element matrices—namely, the mass matrix is positive definite, the stiffness matrix is nonnegative definite, and the damping matrix is positive semi-definite. In the Laplace domain, material properties are modeled phenomenologically as a sum of second-order rational functions dubbed mini-oscillator terms. Developed originally as a tool for the analysis of damping in large flexible space structures, the GHM method is applicable to any structure which incorporates viscoelastic materials.
    keyword(s): Space frame structures , Modeling , Finite element analysis , Damping , Viscoelastic materials , Materials properties , Functions AND Stiffness ,
    • Download: (693.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling of Linear Viscoelastic Space Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/112954
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorD. J. McTavish
    contributor authorP. C. Hughes
    date accessioned2017-05-08T23:43:08Z
    date available2017-05-08T23:43:08Z
    date copyrightJanuary, 1993
    date issued1993
    identifier issn1048-9002
    identifier otherJVACEK-28806#103_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/112954
    description abstractThe GHM Method provides viscoelastic finite elements derived from the commonly used elastic finite elements. Moreover, these GHM elements are used directly and conveniently in second-order structural models jut like their elastic counterparts. The forms of the GHM element matrices preserve the definiteness properties usually associated with finite element matrices—namely, the mass matrix is positive definite, the stiffness matrix is nonnegative definite, and the damping matrix is positive semi-definite. In the Laplace domain, material properties are modeled phenomenologically as a sum of second-order rational functions dubbed mini-oscillator terms. Developed originally as a tool for the analysis of damping in large flexible space structures, the GHM method is applicable to any structure which incorporates viscoelastic materials.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling of Linear Viscoelastic Space Structures
    typeJournal Paper
    journal volume115
    journal issue1
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2930302
    journal fristpage103
    journal lastpage110
    identifier eissn1528-8927
    keywordsSpace frame structures
    keywordsModeling
    keywordsFinite element analysis
    keywordsDamping
    keywordsViscoelastic materials
    keywordsMaterials properties
    keywordsFunctions AND Stiffness
    treeJournal of Vibration and Acoustics:;1993:;volume( 115 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian