YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Free Linear Vibration of Self-Pressurized Foil Bearings

    Source: Journal of Vibration and Acoustics:;1993:;volume( 115 ):;issue: 002::page 145
    Author:
    J. A. Wickert
    DOI: 10.1115/1.2930324
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A foil bearing is formed when a flexible medium travels across a stationary rigid surface and entrains a thin layer of fluid that lubricates the relative sliding motion. Such bearings are used in magnetic tape drives to prevent excessive wear of the recording head and tape interface. In the one-dimensional model considered here, the tape is approximated as an axially-moving Euler-Bernoulli beam under tension, and the air pressure in the bearing region satisfies Reynolds equation for unsteady compressible flow. To the extent that transverse deformation of the tape couples with the air pressure, the “foil bearing problem” falls within the discipline of elastohydrodynamic lubrication. The governing equations for the tape and recording head are linearized about the equilibrium displacement and pressure fields, and the two resulting coupled partial differential equations with nonconstant coefficients describe the linear response. Following global discretization through Galerkin’s method, the natural frequencies, damping, and mode shapes of the tape and recording head system are determined through numerical solution of the generalized matrix eigenvalue problem. The coupled displacement and pressure modes depend on the transport speed, and they are complex because of viscous dissipation of the air and convection of the tape. For the illustrative case of a semicircular recording head, the dependence of the system’s eigenvalues on the transport speed, and on the location of the recording head within the tape’s span, is discussed.
    • Download: (756.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Free Linear Vibration of Self-Pressurized Foil Bearings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/112924
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorJ. A. Wickert
    date accessioned2017-05-08T23:43:05Z
    date available2017-05-08T23:43:05Z
    date copyrightApril, 1993
    date issued1993
    identifier issn1048-9002
    identifier otherJVACEK-28808#145_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/112924
    description abstractA foil bearing is formed when a flexible medium travels across a stationary rigid surface and entrains a thin layer of fluid that lubricates the relative sliding motion. Such bearings are used in magnetic tape drives to prevent excessive wear of the recording head and tape interface. In the one-dimensional model considered here, the tape is approximated as an axially-moving Euler-Bernoulli beam under tension, and the air pressure in the bearing region satisfies Reynolds equation for unsteady compressible flow. To the extent that transverse deformation of the tape couples with the air pressure, the “foil bearing problem” falls within the discipline of elastohydrodynamic lubrication. The governing equations for the tape and recording head are linearized about the equilibrium displacement and pressure fields, and the two resulting coupled partial differential equations with nonconstant coefficients describe the linear response. Following global discretization through Galerkin’s method, the natural frequencies, damping, and mode shapes of the tape and recording head system are determined through numerical solution of the generalized matrix eigenvalue problem. The coupled displacement and pressure modes depend on the transport speed, and they are complex because of viscous dissipation of the air and convection of the tape. For the illustrative case of a semicircular recording head, the dependence of the system’s eigenvalues on the transport speed, and on the location of the recording head within the tape’s span, is discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFree Linear Vibration of Self-Pressurized Foil Bearings
    typeJournal Paper
    journal volume115
    journal issue2
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2930324
    journal fristpage145
    journal lastpage151
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;1993:;volume( 115 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian