Decomposition of the Design ProcessSource: Journal of Mechanical Design:;1993:;volume( 115 ):;issue: 004::page 687DOI: 10.1115/1.2919255Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: In concurrent engineering, an attempt is made to perform design and other related activities simultaneously rather than in series as in the case of traditional design. This may result in a reduction of the duration of the design project, cost savings, and better quality of the final design. However, the concurrent engineering approach might increase the complexity of the design process and make it more difficult to manage. One way to reduce the complexity of a large scale design project is to apply decomposition. This paper presents a methodology for decomposition of a design process to enhance concurrency. The incidence matrix is used to represent the relationship between tasks and design parameters. The decomposition of a task-parameter incidence matrix is discussed. The constraint-variable decomposition, which is a special case of the task-parameter decomposition, is also presented for the management of constraints. Clustering of tasks involved in the design process allows one to determine a potential group of tasks that might be performed simultaneously or tasks that need a special attention during the design process. As a result of decomposition, the design cycle might be reduced. Another advantage of grouping tasks is the simplification of scheduling and management of the design project. Finally, the proposed approach provides a systematic way of decomposing a design problem into subproblems.
keyword(s): Design AND Project tasks ,
|
Collections
Show full item record
contributor author | A. Kusiak | |
contributor author | J. Wang | |
date accessioned | 2017-05-08T23:41:58Z | |
date available | 2017-05-08T23:41:58Z | |
date copyright | December, 1993 | |
date issued | 1993 | |
identifier issn | 1050-0472 | |
identifier other | JMDEDB-27611#687_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/112284 | |
description abstract | In concurrent engineering, an attempt is made to perform design and other related activities simultaneously rather than in series as in the case of traditional design. This may result in a reduction of the duration of the design project, cost savings, and better quality of the final design. However, the concurrent engineering approach might increase the complexity of the design process and make it more difficult to manage. One way to reduce the complexity of a large scale design project is to apply decomposition. This paper presents a methodology for decomposition of a design process to enhance concurrency. The incidence matrix is used to represent the relationship between tasks and design parameters. The decomposition of a task-parameter incidence matrix is discussed. The constraint-variable decomposition, which is a special case of the task-parameter decomposition, is also presented for the management of constraints. Clustering of tasks involved in the design process allows one to determine a potential group of tasks that might be performed simultaneously or tasks that need a special attention during the design process. As a result of decomposition, the design cycle might be reduced. Another advantage of grouping tasks is the simplification of scheduling and management of the design project. Finally, the proposed approach provides a systematic way of decomposing a design problem into subproblems. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Decomposition of the Design Process | |
type | Journal Paper | |
journal volume | 115 | |
journal issue | 4 | |
journal title | Journal of Mechanical Design | |
identifier doi | 10.1115/1.2919255 | |
journal fristpage | 687 | |
journal lastpage | 695 | |
identifier eissn | 1528-9001 | |
keywords | Design AND Project tasks | |
tree | Journal of Mechanical Design:;1993:;volume( 115 ):;issue: 004 | |
contenttype | Fulltext |