Show simple item record

contributor authorG. W. Hunt
contributor authorM. K. Wadee
contributor authorN. Shiacolas
date accessioned2017-05-08T23:40:24Z
date available2017-05-08T23:40:24Z
date copyrightDecember, 1993
date issued1993
identifier issn0021-8936
identifier otherJAMCAV-26352#1033_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/111355
description abstractLocalized solutions, for the classical problem of the nonlinear strut (elastica) on the linear elastic foundation, are predicted from double-scale analysis, and confirmed from nonlinear volume-preserving Runge-Kutta runs. The dynamical phase-space analogy introduces a spatial Lagrangian function, valid over the initial post-buckling range, with kinetic and potential energy components. The indefinite quadratic form of the spatial kinetic energy admits unbounded solutions, corresponding to escape from a potential well. Numerical experimentation demonstrates that there is a fractal edge to the escape boundary, resulting in spatial chaos.
publisherThe American Society of Mechanical Engineers (ASME)
titleLocalized Elasticae for the Strut on the Linear Foundation
typeJournal Paper
journal volume60
journal issue4
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.2900971
journal fristpage1033
journal lastpage1038
identifier eissn1528-9036
keywordsStruts (Engineering)
keywordsBuckling
keywordsChaos
keywordsFractals
keywordsKinetic energy
keywordsPotential energy AND Phase space
treeJournal of Applied Mechanics:;1993:;volume( 060 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record