YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Symmetric Inverse Vibration Problem

    Source: Journal of Vibration and Acoustics:;1992:;volume( 114 ):;issue: 004::page 564
    Author:
    L. Starek
    ,
    D. J. Inman
    ,
    A. Kress
    DOI: 10.1115/1.2930299
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper considers the inverse eigenvalue problem for linear vibrating systems described by a vector differential equation with constant coefficient matrices. The inverse problem of interest here is that of determining real symmetric coefficient matrices, assumed to represent the mass, damping, and stiffness matrices, given the natural frequencies and damping ratios of the structure (i.e., the system eigenvalues). The approach presented here allows for repeated eigenvalues, whether simple or not, and for rigid body modes. The method is algorithmic and results in a computer code for determining mass normalized damping, and stiffness matrices for the case that each mode of the system is underdamped.
    keyword(s): Damping , Differential equations , Vibration , Computers , Eigenvalues , Frequency , Inverse problems AND Stiffness ,
    • Download: (544.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Symmetric Inverse Vibration Problem

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/111170
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorL. Starek
    contributor authorD. J. Inman
    contributor authorA. Kress
    date accessioned2017-05-08T23:40:06Z
    date available2017-05-08T23:40:06Z
    date copyrightOctober, 1992
    date issued1992
    identifier issn1048-9002
    identifier otherJVACEK-28804#564_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/111170
    description abstractThis paper considers the inverse eigenvalue problem for linear vibrating systems described by a vector differential equation with constant coefficient matrices. The inverse problem of interest here is that of determining real symmetric coefficient matrices, assumed to represent the mass, damping, and stiffness matrices, given the natural frequencies and damping ratios of the structure (i.e., the system eigenvalues). The approach presented here allows for repeated eigenvalues, whether simple or not, and for rigid body modes. The method is algorithmic and results in a computer code for determining mass normalized damping, and stiffness matrices for the case that each mode of the system is underdamped.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Symmetric Inverse Vibration Problem
    typeJournal Paper
    journal volume114
    journal issue4
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2930299
    journal fristpage564
    journal lastpage568
    identifier eissn1528-8927
    keywordsDamping
    keywordsDifferential equations
    keywordsVibration
    keywordsComputers
    keywordsEigenvalues
    keywordsFrequency
    keywordsInverse problems AND Stiffness
    treeJournal of Vibration and Acoustics:;1992:;volume( 114 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian