Two-Dimensional, Nonequilibrium, Wet-Steam Calculations for Nozzles and Turbine CascadesSource: Journal of Turbomachinery:;1992:;volume( 114 ):;issue: 003::page 569Author:J. B. Young
DOI: 10.1115/1.2929181Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The paper describes a method of computing nonequilibrium, steady flows of wet steam in two- and quasi-three-dimensional turbine cascades. The mixture conservation equations are solved in an Eulerian reference frame using an inviscid time-marching method that includes the effects of the centrifugal and Coriolis acceleration terms in rotating blade rows. Nucleation and growth of water droplets are computed by integrating the relevant equations along true streamlines in a Lagrangian reference frame. Steam properties are computed using equations that display commercial steam table accuracy for pressures below 10 bar. Special procedures for grouping the range of droplet sizes present are described that allow an accurate representation of the droplet size distribution to be retained without requiring a large increase in CPU time. All types of wet-steam flow, including those involving secondary nucleation, can be computed. Examples are presented that display the sensitivity of the calculation procedure in computing nucleation affected by the shock- and expansion-wave structure in the region of a turbine blade trailing edge. Typical CPU time requirements for nonequilibrium solutions involving primary or secondary nucleations are about three times those for perfect gas calculations.
keyword(s): Nozzles , Turbines , Steam , Nucleation (Physics) , Equations , Flow (Dynamics) , Structural frames , Turbine blades , Waves , Mixtures , Shock (Mechanics) , Water AND Rotating blades ,
|
Collections
Show full item record
contributor author | J. B. Young | |
date accessioned | 2017-05-08T23:39:52Z | |
date available | 2017-05-08T23:39:52Z | |
date copyright | July, 1992 | |
date issued | 1992 | |
identifier issn | 0889-504X | |
identifier other | JOTUEI-28622#569_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/111071 | |
description abstract | The paper describes a method of computing nonequilibrium, steady flows of wet steam in two- and quasi-three-dimensional turbine cascades. The mixture conservation equations are solved in an Eulerian reference frame using an inviscid time-marching method that includes the effects of the centrifugal and Coriolis acceleration terms in rotating blade rows. Nucleation and growth of water droplets are computed by integrating the relevant equations along true streamlines in a Lagrangian reference frame. Steam properties are computed using equations that display commercial steam table accuracy for pressures below 10 bar. Special procedures for grouping the range of droplet sizes present are described that allow an accurate representation of the droplet size distribution to be retained without requiring a large increase in CPU time. All types of wet-steam flow, including those involving secondary nucleation, can be computed. Examples are presented that display the sensitivity of the calculation procedure in computing nucleation affected by the shock- and expansion-wave structure in the region of a turbine blade trailing edge. Typical CPU time requirements for nonequilibrium solutions involving primary or secondary nucleations are about three times those for perfect gas calculations. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Two-Dimensional, Nonequilibrium, Wet-Steam Calculations for Nozzles and Turbine Cascades | |
type | Journal Paper | |
journal volume | 114 | |
journal issue | 3 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.2929181 | |
journal fristpage | 569 | |
journal lastpage | 579 | |
identifier eissn | 1528-8900 | |
keywords | Nozzles | |
keywords | Turbines | |
keywords | Steam | |
keywords | Nucleation (Physics) | |
keywords | Equations | |
keywords | Flow (Dynamics) | |
keywords | Structural frames | |
keywords | Turbine blades | |
keywords | Waves | |
keywords | Mixtures | |
keywords | Shock (Mechanics) | |
keywords | Water AND Rotating blades | |
tree | Journal of Turbomachinery:;1992:;volume( 114 ):;issue: 003 | |
contenttype | Fulltext |