YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Approximations in Hydrodynamic Lubrication

    Source: Journal of Tribology:;1992:;volume( 114 ):;issue: 001::page 14
    Author:
    R. X. Dai
    ,
    Q. Dong
    ,
    A. Z. Szeri
    DOI: 10.1115/1.2920853
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this numerical study of the approximations that led Reynolds to the formulation of classical Lubrication Theory, we compare results from (1) the full Navier-Stokes equations, (2) a lubrication theory relative to the “natural,” i.e., bipolar, coordinate system of the geometry that neglects fluid inertia, and (3) the classical Reynolds Lubrication Theory that neglects both fluid inertia and film curvature. By applying parametric continuation techniques, we then estimate the Reynolds number range of validity of the laminar flow assumption of classical theory. The study demonstrates that both the Navier-Stokes and the “bipolar lubrication” solutions converge monotonically to results from classical Lubrication Theory, one from below and the other from above. Furthermore the oil-film force is shown to be invariant with Reynolds number in the range 0 < R < Rc for conventional journal bearing geometry, where Rc is the critical value of the Reynolds number at first bifurcation. A similar conclusion also holds for the off-diagonal components of the bearing stiffness matrix, while the diagonal components are linear in the Reynolds number, in accordance with the small perturbation theory of DiPrima and Stuart.
    keyword(s): Lubrication , Approximation , Reynolds number , Lubrication theory , Geometry , Fluids , Inertia (Mechanics) , Force , Laminar flow , Navier-Stokes equations , Bearings , Bifurcation , Perturbation theory , Stiffness AND Journal bearings ,
    • Download: (1.106Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Approximations in Hydrodynamic Lubrication

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/110992
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorR. X. Dai
    contributor authorQ. Dong
    contributor authorA. Z. Szeri
    date accessioned2017-05-08T23:39:45Z
    date available2017-05-08T23:39:45Z
    date copyrightJanuary, 1992
    date issued1992
    identifier issn0742-4787
    identifier otherJOTRE9-28494#14_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/110992
    description abstractIn this numerical study of the approximations that led Reynolds to the formulation of classical Lubrication Theory, we compare results from (1) the full Navier-Stokes equations, (2) a lubrication theory relative to the “natural,” i.e., bipolar, coordinate system of the geometry that neglects fluid inertia, and (3) the classical Reynolds Lubrication Theory that neglects both fluid inertia and film curvature. By applying parametric continuation techniques, we then estimate the Reynolds number range of validity of the laminar flow assumption of classical theory. The study demonstrates that both the Navier-Stokes and the “bipolar lubrication” solutions converge monotonically to results from classical Lubrication Theory, one from below and the other from above. Furthermore the oil-film force is shown to be invariant with Reynolds number in the range 0 < R < Rc for conventional journal bearing geometry, where Rc is the critical value of the Reynolds number at first bifurcation. A similar conclusion also holds for the off-diagonal components of the bearing stiffness matrix, while the diagonal components are linear in the Reynolds number, in accordance with the small perturbation theory of DiPrima and Stuart.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleApproximations in Hydrodynamic Lubrication
    typeJournal Paper
    journal volume114
    journal issue1
    journal titleJournal of Tribology
    identifier doi10.1115/1.2920853
    journal fristpage14
    journal lastpage25
    identifier eissn1528-8897
    keywordsLubrication
    keywordsApproximation
    keywordsReynolds number
    keywordsLubrication theory
    keywordsGeometry
    keywordsFluids
    keywordsInertia (Mechanics)
    keywordsForce
    keywordsLaminar flow
    keywordsNavier-Stokes equations
    keywordsBearings
    keywordsBifurcation
    keywordsPerturbation theory
    keywordsStiffness AND Journal bearings
    treeJournal of Tribology:;1992:;volume( 114 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian