YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Path Planning for Robot Manipulators

    Source: Journal of Mechanical Design:;1992:;volume( 114 ):;issue: 004::page 586
    Author:
    S. Muthuswamy
    ,
    S. Manoochehri
    DOI: 10.1115/1.2917048
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The study reported in this paper deals with a computer-based methodology for the synthesis of an optimal tool path for robot manipulators in the presence of obstacles and singularities of the workspace. The methodology plans optimal path to achieve the best robot kinematic and dynamic performance criteria formulated through proper objective functions. The algorithm uses robot design parameters, the size and the location of the obstacles, and the initial and the goal states to generate a collision-free optimal tool path. Using these inputs the robot workspace is generated and discretized, and the obstacles are modeled as forbidden regions of the workspace. The search for the optimal path begins with the definition of a searchspace that includes the starting and the end points. All possible paths in the searchspace connecting these points are enumerated through the formation of a network graph structure. An intelligent heuristic search scheme has been developed to enumerate the network of allowable paths. The optimal path is then obtained as a sequence of via points connecting the initial and the final states by applying Dijkstra’s minimum cost algorithm. Contrary to most existing methodologies, the computational complexity of this algorithm decreases with an increase in the number and/or the size of the obstacles in the workspace. An interactive computer program has been developed to implement this methodology for a general planar two-link manipulator. This path planning methodology can be applied to any manipulator for which the workspace and the obstacles can be geometrically represented. The algorithm has been applied to some industrial SCARA robots and the results are discussed.
    keyword(s): Manipulators AND Path planning ,
    • Download: (1.148Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Path Planning for Robot Manipulators

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/110580
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorS. Muthuswamy
    contributor authorS. Manoochehri
    date accessioned2017-05-08T23:39:02Z
    date available2017-05-08T23:39:02Z
    date copyrightDecember, 1992
    date issued1992
    identifier issn1050-0472
    identifier otherJMDEDB-27601#586_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/110580
    description abstractThe study reported in this paper deals with a computer-based methodology for the synthesis of an optimal tool path for robot manipulators in the presence of obstacles and singularities of the workspace. The methodology plans optimal path to achieve the best robot kinematic and dynamic performance criteria formulated through proper objective functions. The algorithm uses robot design parameters, the size and the location of the obstacles, and the initial and the goal states to generate a collision-free optimal tool path. Using these inputs the robot workspace is generated and discretized, and the obstacles are modeled as forbidden regions of the workspace. The search for the optimal path begins with the definition of a searchspace that includes the starting and the end points. All possible paths in the searchspace connecting these points are enumerated through the formation of a network graph structure. An intelligent heuristic search scheme has been developed to enumerate the network of allowable paths. The optimal path is then obtained as a sequence of via points connecting the initial and the final states by applying Dijkstra’s minimum cost algorithm. Contrary to most existing methodologies, the computational complexity of this algorithm decreases with an increase in the number and/or the size of the obstacles in the workspace. An interactive computer program has been developed to implement this methodology for a general planar two-link manipulator. This path planning methodology can be applied to any manipulator for which the workspace and the obstacles can be geometrically represented. The algorithm has been applied to some industrial SCARA robots and the results are discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimal Path Planning for Robot Manipulators
    typeJournal Paper
    journal volume114
    journal issue4
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.2917048
    journal fristpage586
    journal lastpage595
    identifier eissn1528-9001
    keywordsManipulators AND Path planning
    treeJournal of Mechanical Design:;1992:;volume( 114 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian