contributor author | J. H. Agui | |
contributor author | J. Andreopoulos | |
date accessioned | 2017-05-08T23:38:40Z | |
date available | 2017-05-08T23:38:40Z | |
date copyright | December, 1992 | |
date issued | 1992 | |
identifier issn | 0098-2202 | |
identifier other | JFEGA4-27071#566_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/110381 | |
description abstract | The flow of a three-dimensional boundary layer approaching an upright wall mounted circular cylinder has been experimentally investigated by means of instantaneous flow visualization techniques using a laser sheet and time resolved measurements of the wall pressure, the gradients of which are related to the vorticity flux away from the wall. The mean separation point of the oncoming boundary layer is located on the plane of symmetry, 0.76 and 0.82 diameters upstream of the cylinder for the two investigated Reynolds numbers, based on the cylinder diameter, of 1.0 × 105 and 2.2 × 105 , respectively. The present flow visualization studies have shown that there is always a primary vortex present in the flow which induces an eruption of wall fluid. Very often, this eruption results in the formation of counter rotating or mushroom vortices. A secondary vortex further upstream has been observed occasionally. This vortex, as well as the vortices formed by the fast eruption of wall fluid evolve quickly in time and space and therefore cannot be obtained from time-average measurements. The primary vortex consists of several large scale structures which have originated in the oncoming boundary layer and which have acquired substantial additional vorticity. Point measurements indicate that the r.m.s. pressure fluctuations increase as separation is approached and reach a maximum near reattachment. A low degree of space-time correlation and longer integral time scales were also observed downstream of separation. A bimodal probability density function of the fluctuating pressure was observed in the vicinity of the mean separation point, close to the corner region and in the wake of the cylinder. Quasi periodic vortex shedding from the cylinder with a Strouhal number 0.13 was also observed. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Experimental Investigation of a Three-Dimensional Boundary Layer Flow in the Vicinity of an Upright Wall Mounted Cylinder (Data Bank Contribution) | |
type | Journal Paper | |
journal volume | 114 | |
journal issue | 4 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.2910069 | |
journal fristpage | 566 | |
journal lastpage | 576 | |
identifier eissn | 1528-901X | |
keywords | Flow (Dynamics) | |
keywords | Cylinders | |
keywords | Boundary layers | |
keywords | Vortices | |
keywords | Separation (Technology) | |
keywords | Pressure | |
keywords | Measurement | |
keywords | Fluids | |
keywords | Flow visualization | |
keywords | Vorticity | |
keywords | Circular cylinders | |
keywords | Fluctuations (Physics) | |
keywords | Wakes | |
keywords | Corners (Structural elements) | |
keywords | Gradients | |
keywords | Probability | |
keywords | Vortex shedding | |
keywords | Lasers | |
keywords | Reynolds number | |
keywords | Spacetime AND Density | |
tree | Journal of Fluids Engineering:;1992:;volume( 114 ):;issue: 004 | |
contenttype | Fulltext | |