Show simple item record

contributor authorA. Breña de la Rosa
contributor authorG. Wang
contributor authorW. D. Bachalo
date accessioned2017-05-08T23:38:30Z
date available2017-05-08T23:38:30Z
date copyrightJanuary, 1992
date issued1992
identifier issn1528-8919
identifier otherJETPEZ-26695#72_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/110274
description abstractThe work reports an experimental study of the effect of swirl on the structure of a liquid spray, i.e., on the behavior of drops and their interaction with the gaseous phase, and on the velocity and turbulence fields of the spray in the swirling flow. Three vane-type swirlers having low, medium, and high swirl numbers were used in the tests. The swirlers were placed on the liquid supply tube of a pressure atomizer and tested in the wind tunnel under specified conditions. Properties of the dispersed phase such as velocity and size distributions, particle number density, and volume flux were measured at several locations within the swirling flow field. In addition, mean velocity and turbulence properties were obtained for the gas phase. The results show that flow reversal of the drops is present at the high swirl number within the recirculation region. The spatial distribution of drops reveals a widening of the spray with increasing swirl strength while the concentration of large drops is shown to increase near the core of the swirling field with increasing swirl number. Plots of the turbulence kinetic energy, normal Reynolds stresses, and Reynolds shear stresses show double-peak radial distributions, which indicate regions in the flow where high energy content, mean velocity gradients, and large shear forces are present. The decay of turbulence velocities in the axial direction was observed to be very fast, an indication of high diffusion and dissipation rates of the kinetic energy of turbulence. The significance of the turbulence measurements is that these double-peak profiles indicate a deviation of the swirling spray from isotropy. This information should be relevant to researchers modeling these complex flows.
publisherThe American Society of Mechanical Engineers (ASME)
titleThe Effect of Swirl on the Velocity and Turbulence Fields of a Liquid Spray
typeJournal Paper
journal volume114
journal issue1
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.2906309
journal fristpage72
journal lastpage81
identifier eissn0742-4795
keywordsTurbulence
keywordsSprays
keywordsSwirling flow
keywordsDrops
keywordsFlow (Dynamics)
keywordsKinetic energy
keywordsStress
keywordsShear (Mechanics)
keywordsModeling
keywordsEnergy dissipation
keywordsWind tunnels
keywordsGradients
keywordsIsotropy
keywordsDensity
keywordsForce
keywordsPressure
keywordsDiffusion (Physics)
keywordsMeasurement AND Particulate matter
treeJournal of Engineering for Gas Turbines and Power:;1992:;volume( 114 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record