YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis

    Source: Journal of Biomechanical Engineering:;1992:;volume( 114 ):;issue: 003::page 274
    Author:
    R. M. Nerem
    DOI: 10.1115/1.2891384
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Atherosclerosis, a disease of large- and medium-size arteries, is the chief cause of death in the United States and in most of the western world. Severe atherosclerosis interferes with blood flow; however, even in the early stages of the disease, i.e. during atherogenesis, there is believed to be an important relationship between the disease processes and the characteristics of the blood flow in the arteries. Atherogenesis involves complex cascades of interactions among many factors. Included in this are fluid mechanical factors which are believed to be a cause of the highly focal nature of the disease. From in vivo studies, there is evidence of hemodynamic influences on the endothelium, on intimal thickening, and on monocyte recruitment. In addition, cell culture studies have demonstrated the important effect of a cell’s mechanical environment on structure and function. Most of this evidence is for the endothelial cell, which is believed to be a key mediator of any hemodynamic effect, and it is now well documented that cultured endothelial monolayers, in response to a fluid flow-imposed laminar shear stress, undergo a variety of changes in structure and function. In spite of the progress in recent years, there are many areas in which further work will provide important new information. One of these is in the engineering of the cell culture environment so as to make it more physiologic. Animal studies also are essential in our efforts to understand atherogenesis, and it is clear that we need better information on the pattern of the disease and its temporal development in humans and animal models, as well as the specific underlying biologic events. Complementary to this will be in vitro model studies of arterial fluid mechanics. In addition, one can foresee an increasing role for computer modelling in our efforts to understand the pathophysiology of the atherogenic process. This includes not only computational fluid mechanics, but also modelling the pathobiologic processes taking place within the arterial wall. A key to the atherogenic process may reside in understanding how hemodynamics influences not only intimal smooth muscle cell proliferation, but also the recruitment of the monocyte/macrophage and the formation of foam cells. Finally, it will be necessary to begin to integrate our knowledge of cellular phenomena into a description of the biologic processes within the arterial wall and then to integrate this into a picture of the disease process itself.
    keyword(s): Fluid mechanics , Atherosclerosis , Diseases , Hemodynamics , Blood flow , Modeling , Computers , Endothelial cells , Muscle , Physiology , Flow (Dynamics) , Fluids , Stress AND Shear (Mechanics) ,
    • Download: (1.302Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/109829
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorR. M. Nerem
    date accessioned2017-05-08T23:37:41Z
    date available2017-05-08T23:37:41Z
    date copyrightAugust, 1992
    date issued1992
    identifier issn0148-0731
    identifier otherJBENDY-25887#274_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/109829
    description abstractAtherosclerosis, a disease of large- and medium-size arteries, is the chief cause of death in the United States and in most of the western world. Severe atherosclerosis interferes with blood flow; however, even in the early stages of the disease, i.e. during atherogenesis, there is believed to be an important relationship between the disease processes and the characteristics of the blood flow in the arteries. Atherogenesis involves complex cascades of interactions among many factors. Included in this are fluid mechanical factors which are believed to be a cause of the highly focal nature of the disease. From in vivo studies, there is evidence of hemodynamic influences on the endothelium, on intimal thickening, and on monocyte recruitment. In addition, cell culture studies have demonstrated the important effect of a cell’s mechanical environment on structure and function. Most of this evidence is for the endothelial cell, which is believed to be a key mediator of any hemodynamic effect, and it is now well documented that cultured endothelial monolayers, in response to a fluid flow-imposed laminar shear stress, undergo a variety of changes in structure and function. In spite of the progress in recent years, there are many areas in which further work will provide important new information. One of these is in the engineering of the cell culture environment so as to make it more physiologic. Animal studies also are essential in our efforts to understand atherogenesis, and it is clear that we need better information on the pattern of the disease and its temporal development in humans and animal models, as well as the specific underlying biologic events. Complementary to this will be in vitro model studies of arterial fluid mechanics. In addition, one can foresee an increasing role for computer modelling in our efforts to understand the pathophysiology of the atherogenic process. This includes not only computational fluid mechanics, but also modelling the pathobiologic processes taking place within the arterial wall. A key to the atherogenic process may reside in understanding how hemodynamics influences not only intimal smooth muscle cell proliferation, but also the recruitment of the monocyte/macrophage and the formation of foam cells. Finally, it will be necessary to begin to integrate our knowledge of cellular phenomena into a description of the biologic processes within the arterial wall and then to integrate this into a picture of the disease process itself.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleVascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis
    typeJournal Paper
    journal volume114
    journal issue3
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2891384
    journal fristpage274
    journal lastpage282
    identifier eissn1528-8951
    keywordsFluid mechanics
    keywordsAtherosclerosis
    keywordsDiseases
    keywordsHemodynamics
    keywordsBlood flow
    keywordsModeling
    keywordsComputers
    keywordsEndothelial cells
    keywordsMuscle
    keywordsPhysiology
    keywordsFlow (Dynamics)
    keywordsFluids
    keywordsStress AND Shear (Mechanics)
    treeJournal of Biomechanical Engineering:;1992:;volume( 114 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian