YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Time Domain Method for Parameter System Identification

    Source: Journal of Vibration and Acoustics:;1990:;volume( 112 ):;issue: 003::page 281
    Author:
    A. Hac
    ,
    P. D. Spanos
    DOI: 10.1115/1.2930506
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper a method of parameter identification for a multi-degree-of-freedom structural system in a noisy environment is presented. The method involves an iterative procedure in which initial parameter estimates are obtained by relying on a least squares kind of approximation. This estimate is used in an adaptive Kalman filter to obtain an improved estimate of the system state. The improved estimate is then utilized in the least squares approximation to produce refined estimates of the system parameters. The iteration is repeated until it converges within an acceptable margin. The parameter errors are compensated during filtering by adding pseudonoise to the system equation; the noise itensity is updated in each iteration. Results of a simulation study conducted for a two-degree-of-freedom system indicate that the method can yield, for a relatively low computational cost, reliable estimates of system parameters, even when the data record is short.
    keyword(s): Filtration , Simulation , Noise (Sound) , Approximation , Equations , Errors , Kalman filters AND Least squares approximations ,
    • Download: (725.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Time Domain Method for Parameter System Identification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/107826
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorA. Hac
    contributor authorP. D. Spanos
    date accessioned2017-05-08T23:34:13Z
    date available2017-05-08T23:34:13Z
    date copyrightJuly, 1990
    date issued1990
    identifier issn1048-9002
    identifier otherJVACEK-28793#281_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/107826
    description abstractIn this paper a method of parameter identification for a multi-degree-of-freedom structural system in a noisy environment is presented. The method involves an iterative procedure in which initial parameter estimates are obtained by relying on a least squares kind of approximation. This estimate is used in an adaptive Kalman filter to obtain an improved estimate of the system state. The improved estimate is then utilized in the least squares approximation to produce refined estimates of the system parameters. The iteration is repeated until it converges within an acceptable margin. The parameter errors are compensated during filtering by adding pseudonoise to the system equation; the noise itensity is updated in each iteration. Results of a simulation study conducted for a two-degree-of-freedom system indicate that the method can yield, for a relatively low computational cost, reliable estimates of system parameters, even when the data record is short.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTime Domain Method for Parameter System Identification
    typeJournal Paper
    journal volume112
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2930506
    journal fristpage281
    journal lastpage287
    identifier eissn1528-8927
    keywordsFiltration
    keywordsSimulation
    keywordsNoise (Sound)
    keywordsApproximation
    keywordsEquations
    keywordsErrors
    keywordsKalman filters AND Least squares approximations
    treeJournal of Vibration and Acoustics:;1990:;volume( 112 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian