YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pseudo-High-Speed Balancing

    Source: Journal of Vibration and Acoustics:;1990:;volume( 112 ):;issue: 004::page 418
    Author:
    F. F. Ehrich
    DOI: 10.1115/1.2930123
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In industries like the aircraft gas turbine, trans-critical or super-critical operating speeds are quite common, and rotating machinery must be mass produced with very demanding precision in balance effectiveness, generally without recourse to high-speed balance procedures. A procedure has been developed which permits high-speed multi-plane (i.e., three or more plane) balance correction to be made on rotors in simple conventional low-speed balance machines (Patent Applied For). The procedure accomplishes most of the benefits of actual high-speed or modal or true multi-plane balancing by utilizing other known or available data on the particular rotor’s generic dynamic behavior (i.e., its natural or critical mode shapes) and data on the particular rotor’s generic design and manufacture (i.e., its perceived generic patterns of unbalance distribution). For (N ) balance planes, the procedure involves the specification of a Balancing Rule wherein a sequence of (J ) low speed balance steps is specified (where J equals the integer part of [(N + 7)/2]). At each of these steps, some fraction (called a Balancing Factor) of the measured two plane unbalance vectors is applied to one or two of the other balance correction planes, before final correction is made on the last two correction planes themselves. A procedure is derived to predetermine those (I ) Balance Factors (where I equals [N -2]). The procedure involves an iterative sequence for computing the optimized Balance Factors, with convergence driven by the Newton Raphson procedure, and requires the specification of (I ) pairs of generic unbalance distributions and natural mode shapes. The analytically derived Balancing Factors are designed to null the vibration response of the rotor excited by each of the specified generic unbalance distributions at the critical speed associated with the specified mode shape with which the generic unbalance distribution is paired.
    keyword(s): Machinery , Design , Gas turbines , Rotors , Vibration , Accuracy , Aircraft , Patents AND Shapes ,
    • Download: (742.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pseudo-High-Speed Balancing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/107801
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorF. F. Ehrich
    date accessioned2017-05-08T23:34:11Z
    date available2017-05-08T23:34:11Z
    date copyrightOctober, 1990
    date issued1990
    identifier issn1048-9002
    identifier otherJVACEK-28795#418_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/107801
    description abstractIn industries like the aircraft gas turbine, trans-critical or super-critical operating speeds are quite common, and rotating machinery must be mass produced with very demanding precision in balance effectiveness, generally without recourse to high-speed balance procedures. A procedure has been developed which permits high-speed multi-plane (i.e., three or more plane) balance correction to be made on rotors in simple conventional low-speed balance machines (Patent Applied For). The procedure accomplishes most of the benefits of actual high-speed or modal or true multi-plane balancing by utilizing other known or available data on the particular rotor’s generic dynamic behavior (i.e., its natural or critical mode shapes) and data on the particular rotor’s generic design and manufacture (i.e., its perceived generic patterns of unbalance distribution). For (N ) balance planes, the procedure involves the specification of a Balancing Rule wherein a sequence of (J ) low speed balance steps is specified (where J equals the integer part of [(N + 7)/2]). At each of these steps, some fraction (called a Balancing Factor) of the measured two plane unbalance vectors is applied to one or two of the other balance correction planes, before final correction is made on the last two correction planes themselves. A procedure is derived to predetermine those (I ) Balance Factors (where I equals [N -2]). The procedure involves an iterative sequence for computing the optimized Balance Factors, with convergence driven by the Newton Raphson procedure, and requires the specification of (I ) pairs of generic unbalance distributions and natural mode shapes. The analytically derived Balancing Factors are designed to null the vibration response of the rotor excited by each of the specified generic unbalance distributions at the critical speed associated with the specified mode shape with which the generic unbalance distribution is paired.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePseudo-High-Speed Balancing
    typeJournal Paper
    journal volume112
    journal issue4
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.2930123
    journal fristpage418
    journal lastpage426
    identifier eissn1528-8927
    keywordsMachinery
    keywordsDesign
    keywordsGas turbines
    keywordsRotors
    keywordsVibration
    keywordsAccuracy
    keywordsAircraft
    keywordsPatents AND Shapes
    treeJournal of Vibration and Acoustics:;1990:;volume( 112 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian