contributor author | A. D. Wright | |
contributor author | R. W. Thresher | |
date accessioned | 2017-05-08T23:33:35Z | |
date available | 2017-05-08T23:33:35Z | |
date copyright | November, 1990 | |
date issued | 1990 | |
identifier issn | 0199-6231 | |
identifier other | JSEEDO-28225#326_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/107457 | |
description abstract | Accurately predicting wind turbine blade loads and response is important in predicting the fatigue life of wind turbines. The necessity of including turbulent wind effects in structural dynamics models has long been recognized. At SERI, the structural dynamics model, or FLAP (Force and Loads Analysis Program), is being modified to include turbulent wind fluctuations in predicting rotor blade forces and moments. The objective of this paper is to show FLAP code predictions compared to measured blade loads using actual anemometer array data and a curve-fitting routine to form series expansion coefficients as the turbulence input to FLAP. The predictions are performed for a three-bladed upwind field test turbine. An array of nine anemometers was located 0.8 rotor diameters (D) upwind of the turbine, and data from each anemometer are used in a least-squares curve-fitting routine to obtain a series expansion of the turbulence field over the rotor disk. Three 10-min data cases are used to compare FLAP predictions to measured results. Each case represents a different mean wind speed and turbulence intensity. The time series of coefficients in the expansion of the turbulent velocity field are input to the FLAP code. Time series of predicted flap-bending moments at two blade radial stations are obtained, and power spectra of the predictions are then compared to power spectra of the measured blade bending moments. Conclusions are then drawn about the FLAP code’s ability to predict the blade loads for these three data cases. Recommendations for future work are also made. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Prediction of Stochastic Blade Responses Using Measured Wind-Speed Data as Input to the Flap Code | |
type | Journal Paper | |
journal volume | 112 | |
journal issue | 4 | |
journal title | Journal of Solar Energy Engineering | |
identifier doi | 10.1115/1.2929943 | |
journal fristpage | 326 | |
journal lastpage | 332 | |
identifier eissn | 1528-8986 | |
keywords | Wind velocity | |
keywords | Blades | |
keywords | Turbulence | |
keywords | Stress | |
keywords | Rotors | |
keywords | Turbines | |
keywords | Structural dynamics | |
keywords | Force | |
keywords | Spectra (Spectroscopy) | |
keywords | Fittings | |
keywords | Time series | |
keywords | Wind | |
keywords | Wind turbines | |
keywords | Fatigue life | |
keywords | Fluctuations (Physics) AND Disks | |
tree | Journal of Solar Energy Engineering:;1990:;volume( 112 ):;issue: 004 | |
contenttype | Fulltext | |