YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparison of Statistical and AI Approaches to the Selection of Process Parameters in Intelligent Machining

    Source: Journal of Manufacturing Science and Engineering:;1990:;volume( 112 ):;issue: 002::page 122
    Author:
    G. Chryssolouris
    ,
    M. Guillot
    DOI: 10.1115/1.2899554
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents an approach for the selection of a set of process parameters for use in machining control. The approach is aimed at providing a range of parameters within which machining operations can be optimized. Because of the complexity and somewhat unpredictable nature of the machining process, this approach combines process modelling with rule-based techniques. Modelling correlates process state variables such as surface roughness or chip merit mark to process parameters such as feed rate, cutting speed, and tool rake angle. The modelling techniques considered in this paper include multiple regression analysis, group method of data handling (GMDH), and neural network. A rule-based module determines the final operational range of control parameters based on user information and modelling predictions. The different modelling techniques have been evaluated using data from orthogonal cutting.
    keyword(s): Machining , Modeling , Cutting , Regression analysis , Artificial neural networks AND Surface roughness ,
    • Download: (1.067Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparison of Statistical and AI Approaches to the Selection of Process Parameters in Intelligent Machining

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/107173
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorG. Chryssolouris
    contributor authorM. Guillot
    date accessioned2017-05-08T23:33:04Z
    date available2017-05-08T23:33:04Z
    date copyrightMay, 1990
    date issued1990
    identifier issn1087-1357
    identifier otherJMSEFK-27743#122_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/107173
    description abstractThis paper presents an approach for the selection of a set of process parameters for use in machining control. The approach is aimed at providing a range of parameters within which machining operations can be optimized. Because of the complexity and somewhat unpredictable nature of the machining process, this approach combines process modelling with rule-based techniques. Modelling correlates process state variables such as surface roughness or chip merit mark to process parameters such as feed rate, cutting speed, and tool rake angle. The modelling techniques considered in this paper include multiple regression analysis, group method of data handling (GMDH), and neural network. A rule-based module determines the final operational range of control parameters based on user information and modelling predictions. The different modelling techniques have been evaluated using data from orthogonal cutting.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Comparison of Statistical and AI Approaches to the Selection of Process Parameters in Intelligent Machining
    typeJournal Paper
    journal volume112
    journal issue2
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.2899554
    journal fristpage122
    journal lastpage131
    identifier eissn1528-8935
    keywordsMachining
    keywordsModeling
    keywordsCutting
    keywordsRegression analysis
    keywordsArtificial neural networks AND Surface roughness
    treeJournal of Manufacturing Science and Engineering:;1990:;volume( 112 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian