YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Torsional Oscillations in Moving Bands

    Source: Journal of Vibration and Acoustics:;1988:;volume( 110 ):;issue: 003::page 350
    Author:
    S. T. Ariaratnam
    ,
    S. F. Asokanthan
    DOI: 10.1115/1.3269524
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The torsional vibration of moving bands subject to harmonic tension fluctuation is investigated. A thin rectangular strip translating longitudinally with a constant speed and simply supported at its end is considered. The linearized equation of motion, when suitably discretized, represents a linear gyroscopic system with periodically varying stiffness. The stability of the trivial solution of this system of equations, for tension fluctuations of small amplitude, is examined using the method of averaging. Analytic conditions for stability of torsional motion are obtained explicitly and shown graphically in the frequency vs excitation parameter space.
    keyword(s): Oscillations , Stability , Motion , Fluctuations (Physics) , Equations of motion , Vibration , Equations , Stiffness , Strips AND Tension ,
    • Download: (544.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Torsional Oscillations in Moving Bands

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/104753
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorS. T. Ariaratnam
    contributor authorS. F. Asokanthan
    date accessioned2017-05-08T23:28:48Z
    date available2017-05-08T23:28:48Z
    date copyrightJuly, 1988
    date issued1988
    identifier issn1048-9002
    identifier otherJVACEK-28978#350_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/104753
    description abstractThe torsional vibration of moving bands subject to harmonic tension fluctuation is investigated. A thin rectangular strip translating longitudinally with a constant speed and simply supported at its end is considered. The linearized equation of motion, when suitably discretized, represents a linear gyroscopic system with periodically varying stiffness. The stability of the trivial solution of this system of equations, for tension fluctuations of small amplitude, is examined using the method of averaging. Analytic conditions for stability of torsional motion are obtained explicitly and shown graphically in the frequency vs excitation parameter space.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTorsional Oscillations in Moving Bands
    typeJournal Paper
    journal volume110
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.3269524
    journal fristpage350
    journal lastpage355
    identifier eissn1528-8927
    keywordsOscillations
    keywordsStability
    keywordsMotion
    keywordsFluctuations (Physics)
    keywordsEquations of motion
    keywordsVibration
    keywordsEquations
    keywordsStiffness
    keywordsStrips AND Tension
    treeJournal of Vibration and Acoustics:;1988:;volume( 110 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian