YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Deposit on the Flow in a Turbine Cascade

    Source: Journal of Turbomachinery:;1988:;volume( 110 ):;issue: 004::page 512
    Author:
    A. Bölcs
    ,
    O. Sari
    DOI: 10.1115/1.3262225
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An experimental study on a gas turbine cascade operating under transonic flow conditions is presented. The flow is compared for airfoil shapes corresponding to the design geometry and the geometry taken from a rotor blade, in an industrial gas turbine burning heavy oil, after a few thousand hours of operation. Steady-state data have been obtained in a linear cascade over a range of isentropic exit Mach numbers from 0.6 to 1.6. The flow field was determined by static pressure measurements on the side walls up- and downstream of the cascade, on one side wall in the blade passage, and on the blade surface at midspan. Furthermore, the flow was visualized by the methods of Schlieren and laser holography. The results show that the choked flow conditions are reached at different steady-state isentropic outlet Mach numbers for the two blade shapes. The deposit, typical for a gas turbine, does not however significantly modify the boundary layer separation point. The flow visualization indicates that the shock wave fluctuations have not been significantly influenced by the important roughness and thickness of the deposit. The experimental results on the two cascades are also compared with two-dimensional time-marching calculations after Denton. In the subsonic regime, good agreement was found for the “clean” blade. For the profile with deposit, the flow cannot be correctly predicted by the time-marching calculation, even in subsonic flow condition. The sonic line calculated by the numerical model under transonic outlet conditions (0.9 < M2S < 1.20) does not agree with the laser holography measurements for either of the two cascades.
    • Download: (3.335Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Deposit on the Flow in a Turbine Cascade

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/104629
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorA. Bölcs
    contributor authorO. Sari
    date accessioned2017-05-08T23:28:32Z
    date available2017-05-08T23:28:32Z
    date copyrightOctober, 1988
    date issued1988
    identifier issn0889-504X
    identifier otherJOTUEI-28592#512_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/104629
    description abstractAn experimental study on a gas turbine cascade operating under transonic flow conditions is presented. The flow is compared for airfoil shapes corresponding to the design geometry and the geometry taken from a rotor blade, in an industrial gas turbine burning heavy oil, after a few thousand hours of operation. Steady-state data have been obtained in a linear cascade over a range of isentropic exit Mach numbers from 0.6 to 1.6. The flow field was determined by static pressure measurements on the side walls up- and downstream of the cascade, on one side wall in the blade passage, and on the blade surface at midspan. Furthermore, the flow was visualized by the methods of Schlieren and laser holography. The results show that the choked flow conditions are reached at different steady-state isentropic outlet Mach numbers for the two blade shapes. The deposit, typical for a gas turbine, does not however significantly modify the boundary layer separation point. The flow visualization indicates that the shock wave fluctuations have not been significantly influenced by the important roughness and thickness of the deposit. The experimental results on the two cascades are also compared with two-dimensional time-marching calculations after Denton. In the subsonic regime, good agreement was found for the “clean” blade. For the profile with deposit, the flow cannot be correctly predicted by the time-marching calculation, even in subsonic flow condition. The sonic line calculated by the numerical model under transonic outlet conditions (0.9 < M2S < 1.20) does not agree with the laser holography measurements for either of the two cascades.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Deposit on the Flow in a Turbine Cascade
    typeJournal Paper
    journal volume110
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.3262225
    journal fristpage512
    journal lastpage519
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;1988:;volume( 110 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian