YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prediction of Film Cooling by a Row of Holes With a Two-Dimensional Boundary-Layer Procedure

    Source: Journal of Turbomachinery:;1987:;volume( 109 ):;issue: 004::page 579
    Author:
    B. Schönung
    ,
    W. Rodi
    DOI: 10.1115/1.3262151
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The present paper describes predictions of film cooling by a row of holes. The calculations have been performed by a two-dimensional boundary-layer code with special modifications that account for the basically three-dimensional, elliptic nature of the flow after injection. The elliptic reverse-flow region near the injection is leapt over and new boundary-layer profiles are set up after the blowing region. They take into account the oncoming boundary layer as well as the characteristics of the injected jets. The three dimensionality of the flow, which is very strong near the injection and decreases further downstream, is modeled by so-called dispersion terms, which are added to the two-dimensional boundary-layer equations. These terms describe additional mixing by the laterally nonuniform flow. Information on the modeling of the profiles after injection and of the dispersion terms has been extracted from three-dimensional fully elliptic calculations for specific flow configurations. The modified two-dimensional boundary-layer equations are solved by a forward-marching finite-volume method. A coordinate system is used that stretches with the growth of the boundary layer. The turbulent stresses and heat fluxes are obtained from the k -ε turbulence model. Results are given for flows over flat plates as well as for flows over gas turbine blades for different injection angles, relative spacings, blowing rates, and injection temperatures. The predicted cooling effectiveness and heat transfer coefficients are compared with experimental data and show generally fairly good agreement.
    • Download: (877.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prediction of Film Cooling by a Row of Holes With a Two-Dimensional Boundary-Layer Procedure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/103202
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorB. Schönung
    contributor authorW. Rodi
    date accessioned2017-05-08T23:25:59Z
    date available2017-05-08T23:25:59Z
    date copyrightOctober, 1987
    date issued1987
    identifier issn0889-504X
    identifier otherJOTUEI-28586#579_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/103202
    description abstractThe present paper describes predictions of film cooling by a row of holes. The calculations have been performed by a two-dimensional boundary-layer code with special modifications that account for the basically three-dimensional, elliptic nature of the flow after injection. The elliptic reverse-flow region near the injection is leapt over and new boundary-layer profiles are set up after the blowing region. They take into account the oncoming boundary layer as well as the characteristics of the injected jets. The three dimensionality of the flow, which is very strong near the injection and decreases further downstream, is modeled by so-called dispersion terms, which are added to the two-dimensional boundary-layer equations. These terms describe additional mixing by the laterally nonuniform flow. Information on the modeling of the profiles after injection and of the dispersion terms has been extracted from three-dimensional fully elliptic calculations for specific flow configurations. The modified two-dimensional boundary-layer equations are solved by a forward-marching finite-volume method. A coordinate system is used that stretches with the growth of the boundary layer. The turbulent stresses and heat fluxes are obtained from the k -ε turbulence model. Results are given for flows over flat plates as well as for flows over gas turbine blades for different injection angles, relative spacings, blowing rates, and injection temperatures. The predicted cooling effectiveness and heat transfer coefficients are compared with experimental data and show generally fairly good agreement.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePrediction of Film Cooling by a Row of Holes With a Two-Dimensional Boundary-Layer Procedure
    typeJournal Paper
    journal volume109
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.3262151
    journal fristpage579
    journal lastpage587
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;1987:;volume( 109 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian