YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Linkage Synthesis Using Algebraic Curves

    Source: Journal of Mechanical Design:;1986:;volume( 108 ):;issue: 004::page 543
    Author:
    J. L. Blechschmidt
    ,
    J. J. Uicker
    DOI: 10.1115/1.3258767
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A method to snythesize four-bar linkages using the algebraic curve of the motion of the coupler point on the coupler link of the four-bar linkage is developed. This method is a departure from modern synthesis methods, most of which are based upon Burmester theory. This curve, which is a planar algebraic polynomial in two variables for the four-bar linkage, is a trinodal tricircular sextic (sixth order). These properties are used to determine the coefficients of the curve given a set of points that the coupler point of the coupler link is to pass through. The coefficients of this curve are nonlinear functions of the linkage parameters. The resulting set of nonlinear equations are solved using iterative/optimization techniques for the linkage parameters.
    keyword(s): Linkages , Optimization , Functions , Nonlinear equations , Polynomials AND Motion ,
    • Download: (571.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Linkage Synthesis Using Algebraic Curves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/101427
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorJ. L. Blechschmidt
    contributor authorJ. J. Uicker
    date accessioned2017-05-08T23:23:01Z
    date available2017-05-08T23:23:01Z
    date copyrightDecember, 1986
    date issued1986
    identifier issn1050-0472
    identifier otherJMDEDB-28070#543_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/101427
    description abstractA method to snythesize four-bar linkages using the algebraic curve of the motion of the coupler point on the coupler link of the four-bar linkage is developed. This method is a departure from modern synthesis methods, most of which are based upon Burmester theory. This curve, which is a planar algebraic polynomial in two variables for the four-bar linkage, is a trinodal tricircular sextic (sixth order). These properties are used to determine the coefficients of the curve given a set of points that the coupler point of the coupler link is to pass through. The coefficients of this curve are nonlinear functions of the linkage parameters. The resulting set of nonlinear equations are solved using iterative/optimization techniques for the linkage parameters.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLinkage Synthesis Using Algebraic Curves
    typeJournal Paper
    journal volume108
    journal issue4
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.3258767
    journal fristpage543
    journal lastpage548
    identifier eissn1528-9001
    keywordsLinkages
    keywordsOptimization
    keywordsFunctions
    keywordsNonlinear equations
    keywordsPolynomials AND Motion
    treeJournal of Mechanical Design:;1986:;volume( 108 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian