YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hydrodynamic Lubrication of Rigid Nonconformal Contacts in Combined Rolling and Normal Motion

    Source: Journal of Tribology:;1985:;volume( 107 ):;issue: 001::page 97
    Author:
    M. K. Ghosh
    ,
    D. Brewe
    ,
    J. Hamrock
    DOI: 10.1115/1.3261009
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant has been obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion has been determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry has also been found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity β in terms of the dimensionless normal velocity parameter q (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter α. The result is expressed in the form β={α−0.028sech(1.68q)}1/q The ratio of the dynamic to steady state peak pressures in the contact ξ increases considerably with increasing normal velocity parameter during normal approach, with a similar decrease during separation. The ratio is expressed as a function of q and α by ξ={α−0.032sech(2q)}1/q
    • Download: (695.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hydrodynamic Lubrication of Rigid Nonconformal Contacts in Combined Rolling and Normal Motion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/100518
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorM. K. Ghosh
    contributor authorD. Brewe
    contributor authorJ. Hamrock
    date accessioned2017-05-08T23:21:23Z
    date available2017-05-08T23:21:23Z
    date copyrightJanuary, 1985
    date issued1985
    identifier issn0742-4787
    identifier otherJOTRE9-28441#97_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/100518
    description abstractA numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant has been obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion has been determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry has also been found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity β in terms of the dimensionless normal velocity parameter q (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter α. The result is expressed in the form β={α−0.028sech(1.68q)}1/q The ratio of the dynamic to steady state peak pressures in the contact ξ increases considerably with increasing normal velocity parameter during normal approach, with a similar decrease during separation. The ratio is expressed as a function of q and α by ξ={α−0.032sech(2q)}1/q
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHydrodynamic Lubrication of Rigid Nonconformal Contacts in Combined Rolling and Normal Motion
    typeJournal Paper
    journal volume107
    journal issue1
    journal titleJournal of Tribology
    identifier doi10.1115/1.3261009
    journal fristpage97
    journal lastpage103
    identifier eissn1528-8897
    treeJournal of Tribology:;1985:;volume( 107 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian