YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Euler Parameters in Computational Kinematics and Dynamics. Part 2

    Source: Journal of Mechanical Design:;1985:;volume( 107 ):;issue: 003::page 366
    Author:
    P. E. Nikravesh
    ,
    O. K. Kwon
    ,
    R. A. Wehage
    DOI: 10.1115/1.3260723
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper a methodology for formulating kinematic constraint equations and equations of motion for constrained mechanical systems is presented. Constraint equations and transformation matrices are expressed in terms of Euler parameters. The kinematic velocity and acceleration equations, and the equations of motion are expressed in terms of physical angular velocity of the bodies. An algorithm for solving the constrained equations of motion using a constraint stabilization technique is reviewed. Significant reduction in computation time can be achieved with this formulation and the accompanying algorithm as compared with the method presented in Part 1.
    keyword(s): Kinematics , Dynamics (Mechanics) , Equations of motion , Algorithms , Computation AND Equations ,
    • Download: (367.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Euler Parameters in Computational Kinematics and Dynamics. Part 2

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/100176
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorP. E. Nikravesh
    contributor authorO. K. Kwon
    contributor authorR. A. Wehage
    date accessioned2017-05-08T23:20:48Z
    date available2017-05-08T23:20:48Z
    date copyrightSeptember, 1985
    date issued1985
    identifier issn1050-0472
    identifier otherJMDEDB-28055#366_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/100176
    description abstractIn this paper a methodology for formulating kinematic constraint equations and equations of motion for constrained mechanical systems is presented. Constraint equations and transformation matrices are expressed in terms of Euler parameters. The kinematic velocity and acceleration equations, and the equations of motion are expressed in terms of physical angular velocity of the bodies. An algorithm for solving the constrained equations of motion using a constraint stabilization technique is reviewed. Significant reduction in computation time can be achieved with this formulation and the accompanying algorithm as compared with the method presented in Part 1.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEuler Parameters in Computational Kinematics and Dynamics. Part 2
    typeJournal Paper
    journal volume107
    journal issue3
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.3260723
    journal fristpage366
    journal lastpage369
    identifier eissn1528-9001
    keywordsKinematics
    keywordsDynamics (Mechanics)
    keywordsEquations of motion
    keywordsAlgorithms
    keywordsComputation AND Equations
    treeJournal of Mechanical Design:;1985:;volume( 107 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian