YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-3 of 3

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Identification and Fault Diagnosis of Rolling Element Bearings Using Dimension Theory and Machine Learning Techniques 

    Source: Journal of Tribology:;2024:;volume( 146 ):;issue: 009:;page 94301-1
    Author(s): Jadhav, Prashant S.; Salunkhe, Vishal G.; Desavale, R. G.; Khot, S. M.; Shinde, P. V.; Jadhav, P. M.; Gadyanavar, Pramila R.
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The study presents the classification of bearing fault types occurring in rotating machines using machine learning techniques. Recent condition monitoring demands all-inclusive but precise fault diagnosis for industrial ...
    Request PDF

    A Novel Method for Bearing Fault Diagnosis Based on Novel Feature Sets With Machine Learning Technique 

    Source: Journal of Tribology:;2024:;volume( 147 ):;issue: 002:;page 24301-1
    Author(s): Mali, Asmita R.; Shinde, P. V.; Patil, Amit Prakash; Salunkhe, Vishal G.; Desavale, R. G.; Jadhav, Prashant S.
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Bearings often experience small and medium raceway damage due to operating and loading conditions, which induces abnormal dynamic behavior. The rotor-bearing system is tested at various conditions, and the influence of ...
    Request PDF

    A Novel Method to Classify Rolling Element Bearing Faults Using K-Nearest Neighbor Machine Learning Algorithm 

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2022:;volume( 008 ):;issue: 003:;page 31202-1
    Author(s): Vishwendra, More A.; Salunkhe, Pratiksha S.; Patil, Shivanjali V.; Shinde, Sumit A.; Shinde, P. V.; Desavale, R. G.; Jadhav, P. M.; Dharwadkar, Nagaraj V.
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A novel method is proposed in this work for the classification of fault in the ball bearings. Applications of K-nearest neighbor (KNN) techniques are increasing, which redefines the state-of-the-art technology for defect ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian