Show simple item record

contributor authorT. Nishioka
contributor authorS. N. Atluri
date accessioned2017-05-08T23:14:06Z
date available2017-05-08T23:14:06Z
date copyrightNovember, 1982
date issued1982
identifier issn0094-9930
identifier otherJPVTAS-28215#299_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/96285
description abstractAn alternating method, in conjunction with the finite element method and a newly developed analytical solution for an elliptical crack in an infinite solid, is used to determine stress intensity factors for semi-elliptical surface flaws in cylindrical pressure vessels. The present finite element alternating method leads to a very inexpensive procedure for routine evaluation of accurate stress intensity factors for flawed pressure vessels. The problems considered in the present paper are: (i) an outer semi-elliptical surface crack in a thick cylinder, and (ii) inner semi-elliptical surface cracks in a thin cylinder which were recommended for analysis by the ASME Boiler and Pressure Vessel Code (Section III, App. G, 1977). For each crack geometry of an inner surface crack, seven independent loadings, such as internal pressure loading on the cylinder surface and polynomial pressure loadings from constant to fifth order on the crack surface, are considered. From the analyses of these loadings, the magnification factors for the internal pressure loading and the polynomial influence functions for the polynomial crack surface loadings are determined. By the method of superposition, the magnification factors for internally pressurized cylinders are rederived by using the polynomial influence functions to check the internal consistency of the present analysis. These values agree excellently with the magnification factors obtained directly. The present results are also compared with the results available in literature.
publisherThe American Society of Mechanical Engineers (ASME)
titleAnalysis of Surface Flaw in Pressure Vessels by a New 3-Dimensional Alternating Method
typeJournal Paper
journal volume104
journal issue4
journal titleJournal of Pressure Vessel Technology
identifier doi10.1115/1.3264221
journal fristpage299
journal lastpage307
identifier eissn1528-8978
keywordsPressure vessels
keywordsFracture (Materials)
keywordsCylinders
keywordsPolynomials
keywordsSurface cracks
keywordsPressure
keywordsFunctions
keywordsStress
keywordsFinite element methods
keywordsFinite element analysis
keywordsASME Boiler and Pressure Vessel Code AND Geometry
treeJournal of Pressure Vessel Technology:;1982:;volume( 104 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record