YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Toward an Improvement in the Identification of Bridge Deck Flutter Derivatives

    Source: Journal of Engineering Mechanics:;2009:;Volume ( 135 ):;issue: 008
    Author:
    Gianni Bartoli
    ,
    Stefano Contri
    ,
    Claudio Mannini
    ,
    Michele Righi
    DOI: 10.1061/(ASCE)0733-9399(2009)135:8(771)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a short review of the state-of-the-art methods to identify bridge deck flutter derivatives and proposes a new algorithm to simultaneously extract the aeroelastic coefficients from free-vibration section-model tests, which is based on the improvement of the unifying least-squares (ULS) method and is therefore called modified unifying least-squares method. The advantages with respect to ULS are the faster and better convergence and the improvement in accuracy due to the introduction of weighting factors in the unifying error function. The method has been validated through numerically simulated noisy signals and experimental heaving and pitching time histories for two different bridge deck cross sections: a single-box and a multiple-box girder section model. The analysis of the artificial signals shows that a few system parameters are very difficult to be identified due to the fact that the problem is strongly ill-conditioned. Nevertheless, all the diagonal and off-diagonal components of the stiffness and damping matrices which significantly contribute to the output of the system are correctly estimated. The improvement with respect to other methods is extensively discussed. For the wind-tunnel test cases the accuracy of the identification procedure is evaluated through the comparison between measured signals and those simulated through the estimated mechanical and aerodynamic system parameters with very satisfactory results. With respect to many previous attempts of validation, this approach clearly shows the degree of accuracy that can be expected from the identification algorithm. Finally, for the considered test cases the linear model which stands behind the method seems to be an acceptable approximation of the physics of the phenomenon.
    • Download: (1.936Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Toward an Improvement in the Identification of Bridge Deck Flutter Derivatives

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/86704
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorGianni Bartoli
    contributor authorStefano Contri
    contributor authorClaudio Mannini
    contributor authorMichele Righi
    date accessioned2017-05-08T22:41:37Z
    date available2017-05-08T22:41:37Z
    date copyrightAugust 2009
    date issued2009
    identifier other%28asce%290733-9399%282009%29135%3A8%28771%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/86704
    description abstractThis paper presents a short review of the state-of-the-art methods to identify bridge deck flutter derivatives and proposes a new algorithm to simultaneously extract the aeroelastic coefficients from free-vibration section-model tests, which is based on the improvement of the unifying least-squares (ULS) method and is therefore called modified unifying least-squares method. The advantages with respect to ULS are the faster and better convergence and the improvement in accuracy due to the introduction of weighting factors in the unifying error function. The method has been validated through numerically simulated noisy signals and experimental heaving and pitching time histories for two different bridge deck cross sections: a single-box and a multiple-box girder section model. The analysis of the artificial signals shows that a few system parameters are very difficult to be identified due to the fact that the problem is strongly ill-conditioned. Nevertheless, all the diagonal and off-diagonal components of the stiffness and damping matrices which significantly contribute to the output of the system are correctly estimated. The improvement with respect to other methods is extensively discussed. For the wind-tunnel test cases the accuracy of the identification procedure is evaluated through the comparison between measured signals and those simulated through the estimated mechanical and aerodynamic system parameters with very satisfactory results. With respect to many previous attempts of validation, this approach clearly shows the degree of accuracy that can be expected from the identification algorithm. Finally, for the considered test cases the linear model which stands behind the method seems to be an acceptable approximation of the physics of the phenomenon.
    publisherAmerican Society of Civil Engineers
    titleToward an Improvement in the Identification of Bridge Deck Flutter Derivatives
    typeJournal Paper
    journal volume135
    journal issue8
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2009)135:8(771)
    treeJournal of Engineering Mechanics:;2009:;Volume ( 135 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian