YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Surface Loading of a Multilayered Viscoelastic Pavement: Semianalytical Solution

    Source: Journal of Engineering Mechanics:;2009:;Volume ( 135 ):;issue: 006
    Author:
    Ewan Y. Chen
    ,
    Ernian Pan
    ,
    Roger Green
    DOI: 10.1061/(ASCE)0733-9399(2009)135:6(517)
    Publisher: American Society of Civil Engineers
    Abstract: In this paper a new method is proposed to analyze the mechanical response of a linear viscoelastic pavement. The material parameters of the asphalt concrete are characterized by the relaxation modulus and creep compliance, which are further represented by the Prony series. By virtue of the Laplace transform and the correspondence principle, the solution in the Laplace domain is first derived. The interconversion between the relaxation modulus and creep compliance is then applied to treat the complicated inverse Laplace transform. The displacement, strain, and stress fields are represented concisely in terms of the convolution integral in the time domain, which is subsequently solved analytically. Therefore, responses of the viscoelastic pavement are finally expressed analytically in the time domain and numerically in space domain, called a semianalytical approach. Since both the relaxation modulus and creep compliance are used simultaneously, instead of only one parameter in the conventional methods, the present method is also called a dual-parameter method. The present formulation is verified at both the short- and long-term time limits analytically and at the other finite time numerically, as compared to the conventional numerical methods. We clearly show that the present dual-parameter and semianalytical method can predict accurately the time-dependent responses of the viscoelastic pavement, especially at the long-term time. The present formulation could also be employed to validate the widely used collocation method.
    • Download: (269.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Surface Loading of a Multilayered Viscoelastic Pavement: Semianalytical Solution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/86683
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorEwan Y. Chen
    contributor authorErnian Pan
    contributor authorRoger Green
    date accessioned2017-05-08T22:41:35Z
    date available2017-05-08T22:41:35Z
    date copyrightJune 2009
    date issued2009
    identifier other%28asce%290733-9399%282009%29135%3A6%28517%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/86683
    description abstractIn this paper a new method is proposed to analyze the mechanical response of a linear viscoelastic pavement. The material parameters of the asphalt concrete are characterized by the relaxation modulus and creep compliance, which are further represented by the Prony series. By virtue of the Laplace transform and the correspondence principle, the solution in the Laplace domain is first derived. The interconversion between the relaxation modulus and creep compliance is then applied to treat the complicated inverse Laplace transform. The displacement, strain, and stress fields are represented concisely in terms of the convolution integral in the time domain, which is subsequently solved analytically. Therefore, responses of the viscoelastic pavement are finally expressed analytically in the time domain and numerically in space domain, called a semianalytical approach. Since both the relaxation modulus and creep compliance are used simultaneously, instead of only one parameter in the conventional methods, the present method is also called a dual-parameter method. The present formulation is verified at both the short- and long-term time limits analytically and at the other finite time numerically, as compared to the conventional numerical methods. We clearly show that the present dual-parameter and semianalytical method can predict accurately the time-dependent responses of the viscoelastic pavement, especially at the long-term time. The present formulation could also be employed to validate the widely used collocation method.
    publisherAmerican Society of Civil Engineers
    titleSurface Loading of a Multilayered Viscoelastic Pavement: Semianalytical Solution
    typeJournal Paper
    journal volume135
    journal issue6
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2009)135:6(517)
    treeJournal of Engineering Mechanics:;2009:;Volume ( 135 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian