YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Viscoelastic Model for Discrete Element Simulation of Asphalt Mixtures

    Source: Journal of Engineering Mechanics:;2009:;Volume ( 135 ):;issue: 004
    Author:
    Yu Liu
    ,
    Qingli Dai
    ,
    Zhanping You
    DOI: 10.1061/(ASCE)0733-9399(2009)135:4(324)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a viscoelastic model of asphalt mixtures with the discrete element method, where the viscoelastic behaviors of asphalt mastics (fine aggregates, fines, and asphalt binder) are represented by a Burger’s model. Aggregates are simulated with irregular shape particles consisting of balls bonded together by elastic contact models, and the interplaces between aggregates are filled with balls bonded with viscoelastic Burger’s model to represent asphalt mastic. Digital samples were prepared with the image analysis technique. The micromechanical model was developed with four constitutive laws to represent the interactions at contacts of discrete elements (balls) within an aggregate, within mastic, between an aggregate and mastic, and between two adjacent aggregates. Each of these constitutive laws consists of three parts: a stiffness model, a slip model, and a bonding model in order to provide a relationship between the contact force and relative displacement and also in order to describe slipping and tensile strength at a particular contact. The relationship between the microscale model input and macroscale material properties was derived, and an iterative procedure was developed to fit the dynamic modulus test data of asphalt mastic with Burger’s model. The favorable agreement between the discrete element prediction and the lab results on dynamic moduli and phase angles indicates that the viscoelastic discrete element model developed in this study is very capable of simulating constitutive behavior of asphalt mixtures.
    • Download: (626.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Viscoelastic Model for Discrete Element Simulation of Asphalt Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/86662
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorYu Liu
    contributor authorQingli Dai
    contributor authorZhanping You
    date accessioned2017-05-08T22:41:33Z
    date available2017-05-08T22:41:33Z
    date copyrightApril 2009
    date issued2009
    identifier other%28asce%290733-9399%282009%29135%3A4%28324%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/86662
    description abstractThis paper presents a viscoelastic model of asphalt mixtures with the discrete element method, where the viscoelastic behaviors of asphalt mastics (fine aggregates, fines, and asphalt binder) are represented by a Burger’s model. Aggregates are simulated with irregular shape particles consisting of balls bonded together by elastic contact models, and the interplaces between aggregates are filled with balls bonded with viscoelastic Burger’s model to represent asphalt mastic. Digital samples were prepared with the image analysis technique. The micromechanical model was developed with four constitutive laws to represent the interactions at contacts of discrete elements (balls) within an aggregate, within mastic, between an aggregate and mastic, and between two adjacent aggregates. Each of these constitutive laws consists of three parts: a stiffness model, a slip model, and a bonding model in order to provide a relationship between the contact force and relative displacement and also in order to describe slipping and tensile strength at a particular contact. The relationship between the microscale model input and macroscale material properties was derived, and an iterative procedure was developed to fit the dynamic modulus test data of asphalt mastic with Burger’s model. The favorable agreement between the discrete element prediction and the lab results on dynamic moduli and phase angles indicates that the viscoelastic discrete element model developed in this study is very capable of simulating constitutive behavior of asphalt mixtures.
    publisherAmerican Society of Civil Engineers
    titleViscoelastic Model for Discrete Element Simulation of Asphalt Mixtures
    typeJournal Paper
    journal volume135
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2009)135:4(324)
    treeJournal of Engineering Mechanics:;2009:;Volume ( 135 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian