YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Poromechanics Response of Inclined Wellbore Geometry in Chemically Active Fractured Porous Media

    Source: Journal of Engineering Mechanics:;2009:;Volume ( 135 ):;issue: 011
    Author:
    Vinh X. Nguyen
    ,
    Younane N. Abousleiman
    DOI: 10.1061/(ASCE)0733-9399(2009)135:11(1281)
    Publisher: American Society of Civil Engineers
    Abstract: The porochemoelastic analytical models and solutions have been used to describe the response of chemically active saturated porous media such as clays, shales, and biological tissues. To date, all existing solutions are only applicable to single-porosity and single-permeability model, which could fall short when the porous material exhibits multiporosity and/or multipermeability characteristics, such as secondary porosity or fractures. This work summarizes the general linear dual-porosity and dual-permeability porochemoelastic formulation and presents the solution of an inclined wellbore drilled in a fluid-saturated chemically active fractured formation, such as fractured shale, subjected to a three-dimensional in situ state of stress. The analytical solution to this geometry incorporates coupled matrix-fracture deformation, simultaneous fluid flows, solute transports and interporosity exchanges induced by the combined influences of stress variation, fluid pressure and solute chemical salinity gradients under isothermal conditions. The fracture system is modeled as a secondary porosity porous continuum following Biot’s formulation while using mixture theory and the pore fluid is a binary solution comprised of a solvent and a solute. Results for the transient stresses and dual pore pressure distributions due to the coupled fracture and hydrochemical effects are plotted in the vicinity of the inclined wellbore and compared with the classical porochemoelastic and poroelastic counterparts. Finally, wellbore stability analyses are carried out to demonstrate applications of the solutions to field drilling operations.
    • Download: (512.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Poromechanics Response of Inclined Wellbore Geometry in Chemically Active Fractured Porous Media

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/86626
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorVinh X. Nguyen
    contributor authorYounane N. Abousleiman
    date accessioned2017-05-08T22:41:29Z
    date available2017-05-08T22:41:29Z
    date copyrightNovember 2009
    date issued2009
    identifier other%28asce%290733-9399%282009%29135%3A11%281281%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/86626
    description abstractThe porochemoelastic analytical models and solutions have been used to describe the response of chemically active saturated porous media such as clays, shales, and biological tissues. To date, all existing solutions are only applicable to single-porosity and single-permeability model, which could fall short when the porous material exhibits multiporosity and/or multipermeability characteristics, such as secondary porosity or fractures. This work summarizes the general linear dual-porosity and dual-permeability porochemoelastic formulation and presents the solution of an inclined wellbore drilled in a fluid-saturated chemically active fractured formation, such as fractured shale, subjected to a three-dimensional in situ state of stress. The analytical solution to this geometry incorporates coupled matrix-fracture deformation, simultaneous fluid flows, solute transports and interporosity exchanges induced by the combined influences of stress variation, fluid pressure and solute chemical salinity gradients under isothermal conditions. The fracture system is modeled as a secondary porosity porous continuum following Biot’s formulation while using mixture theory and the pore fluid is a binary solution comprised of a solvent and a solute. Results for the transient stresses and dual pore pressure distributions due to the coupled fracture and hydrochemical effects are plotted in the vicinity of the inclined wellbore and compared with the classical porochemoelastic and poroelastic counterparts. Finally, wellbore stability analyses are carried out to demonstrate applications of the solutions to field drilling operations.
    publisherAmerican Society of Civil Engineers
    titlePoromechanics Response of Inclined Wellbore Geometry in Chemically Active Fractured Porous Media
    typeJournal Paper
    journal volume135
    journal issue11
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2009)135:11(1281)
    treeJournal of Engineering Mechanics:;2009:;Volume ( 135 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian