YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of Nonstationary Stochastic Processes by Spectral Representation

    Source: Journal of Engineering Mechanics:;2007:;Volume ( 133 ):;issue: 006
    Author:
    Jianwen Liang
    ,
    Samit Ray Chaudhuri
    ,
    Masanobu Shinozuka
    DOI: 10.1061/(ASCE)0733-9399(2007)133:6(616)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a rigorous derivation of a previously known formula for simulation of one-dimensional, univariate, nonstationary stochastic processes integrating Priestly’s evolutionary spectral representation theory. Applying this formula, sample functions can be generated with great computational efficiency. The simulated stochastic process is asymptotically Gaussian as the number of terms tends to infinity. This paper shows that (1) these sample functions accurately reflect the prescribed probabilistic characteristics of the stochastic process when the number of terms in the cosine series is large, i.e., the ensemble averaged evolutionary power spectral density function (PSDF) or autocorrelation function approaches the corresponding target function as the sample size increases, and (2) the simulation formula, under certain conditions, can be reduced to that for nonstationary white noise process or Shinozuka’s spectral representation of stationary process. In addition to derivation of simulation formula, three methods are developed in this paper to estimate the evolutionary PSDF of a given time-history data by means of the short-time Fourier transform (STFT), the wavelet transform (WT), and the Hilbert-Huang transform (HHT). A comparison of the PSDF of the well-known El Centro earthquake record estimated by these methods shows that the STFT and the WT give similar results, whereas the HHT gives more concentrated energy at certain frequencies. Effectiveness of the proposed simulation formula for nonstationary sample functions is demonstrated by simulating time histories from the estimated evolutionary PSDFs. Mean acceleration spectrum obtained by averaging the spectra of generated time histories are then presented and compared with the target spectrum to demonstrate the usefulness of this method.
    • Download: (345.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of Nonstationary Stochastic Processes by Spectral Representation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/86430
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorJianwen Liang
    contributor authorSamit Ray Chaudhuri
    contributor authorMasanobu Shinozuka
    date accessioned2017-05-08T22:41:12Z
    date available2017-05-08T22:41:12Z
    date copyrightJune 2007
    date issued2007
    identifier other%28asce%290733-9399%282007%29133%3A6%28616%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/86430
    description abstractThis paper presents a rigorous derivation of a previously known formula for simulation of one-dimensional, univariate, nonstationary stochastic processes integrating Priestly’s evolutionary spectral representation theory. Applying this formula, sample functions can be generated with great computational efficiency. The simulated stochastic process is asymptotically Gaussian as the number of terms tends to infinity. This paper shows that (1) these sample functions accurately reflect the prescribed probabilistic characteristics of the stochastic process when the number of terms in the cosine series is large, i.e., the ensemble averaged evolutionary power spectral density function (PSDF) or autocorrelation function approaches the corresponding target function as the sample size increases, and (2) the simulation formula, under certain conditions, can be reduced to that for nonstationary white noise process or Shinozuka’s spectral representation of stationary process. In addition to derivation of simulation formula, three methods are developed in this paper to estimate the evolutionary PSDF of a given time-history data by means of the short-time Fourier transform (STFT), the wavelet transform (WT), and the Hilbert-Huang transform (HHT). A comparison of the PSDF of the well-known El Centro earthquake record estimated by these methods shows that the STFT and the WT give similar results, whereas the HHT gives more concentrated energy at certain frequencies. Effectiveness of the proposed simulation formula for nonstationary sample functions is demonstrated by simulating time histories from the estimated evolutionary PSDFs. Mean acceleration spectrum obtained by averaging the spectra of generated time histories are then presented and compared with the target spectrum to demonstrate the usefulness of this method.
    publisherAmerican Society of Civil Engineers
    titleSimulation of Nonstationary Stochastic Processes by Spectral Representation
    typeJournal Paper
    journal volume133
    journal issue6
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2007)133:6(616)
    treeJournal of Engineering Mechanics:;2007:;Volume ( 133 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian