YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Method for Pullout of Anchor from Anchor–Mortar–Concrete Anchorage System due to Shear Failure of Mortar

    Source: Journal of Engineering Mechanics:;2007:;Volume ( 133 ):;issue: 012
    Author:
    Zhimin Wu
    ,
    Shutong Yang
    ,
    Xiaozhi Hu
    ,
    Jianjun Zheng
    DOI: 10.1061/(ASCE)0733-9399(2007)133:12(1352)
    Publisher: American Society of Civil Engineers
    Abstract: Depending on the relevant material properties, failure of grouted anchors can take forms of pullout of concrete cones, debonding at either anchor–grout or grout–concrete interface, fracture of anchor and combination of some of these failure modes. Further, if the thickness of the grout layer is thin enough, the shear strength of the grout is relatively low or the anchor is in the form of a steel bar with ribs or spirals, the grout would be sheared off so that the anchor is pulled out. The present study presents an analytical method for the last scenario, i.e., anchor pullout from an anchor–mortar–concrete anchorage due to shear failure of mortar. Two different boundary conditions are considered: fixed bottom surface of concrete as Boundary 1, and top surface of concrete with uniform distributed force as Boundary 2. A shear-lag model was introduced to analyze the behaviors of the mortar and the interfacial properties of both the anchor–mortar and the mortar–concrete interfaces were also considered. Based on the deformation compatibilities of the interfaces and the mortar layer, the distributions of the tensile stresses in the anchor and shear stresses in the mortar along the embedment length were obtained analytically during different loading stages for both Boundaries 1 and 2. Moreover, the probabilities and sequences of shear cracks induced by the mortar failure were determined according to the boundary conditions and the comparison between the shear stresses at the loading and nonloading ends. Double shear crack propagation from both ends with different crack lengths was then investigated. Besides, the pullout load was expressed as a function of the shear crack lengths. Then the maximum load and the corresponding critical crack lengths were obtained by using the theories of extremum. Finally, a series of material, structural, and interfacial parameters were adopted to study their influences on the calculated results using the proposed method, including the critical crack lengths, initial cracking load and maximum pullout load. It was found that the initial cracking and maximum loads in Boundary 1 are larger than those in Boundary 2. However, as the longitudinal rigidity of the concrete increases, the values of the maximum pullout loads in both of the boundary conditions approach each other. It was also found that there exists an effective bonding length, beyond which the critical crack length and maximum pullout load are no longer increased.
    • Download: (301.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Method for Pullout of Anchor from Anchor–Mortar–Concrete Anchorage System due to Shear Failure of Mortar

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/86366
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorZhimin Wu
    contributor authorShutong Yang
    contributor authorXiaozhi Hu
    contributor authorJianjun Zheng
    date accessioned2017-05-08T22:41:06Z
    date available2017-05-08T22:41:06Z
    date copyrightDecember 2007
    date issued2007
    identifier other%28asce%290733-9399%282007%29133%3A12%281352%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/86366
    description abstractDepending on the relevant material properties, failure of grouted anchors can take forms of pullout of concrete cones, debonding at either anchor–grout or grout–concrete interface, fracture of anchor and combination of some of these failure modes. Further, if the thickness of the grout layer is thin enough, the shear strength of the grout is relatively low or the anchor is in the form of a steel bar with ribs or spirals, the grout would be sheared off so that the anchor is pulled out. The present study presents an analytical method for the last scenario, i.e., anchor pullout from an anchor–mortar–concrete anchorage due to shear failure of mortar. Two different boundary conditions are considered: fixed bottom surface of concrete as Boundary 1, and top surface of concrete with uniform distributed force as Boundary 2. A shear-lag model was introduced to analyze the behaviors of the mortar and the interfacial properties of both the anchor–mortar and the mortar–concrete interfaces were also considered. Based on the deformation compatibilities of the interfaces and the mortar layer, the distributions of the tensile stresses in the anchor and shear stresses in the mortar along the embedment length were obtained analytically during different loading stages for both Boundaries 1 and 2. Moreover, the probabilities and sequences of shear cracks induced by the mortar failure were determined according to the boundary conditions and the comparison between the shear stresses at the loading and nonloading ends. Double shear crack propagation from both ends with different crack lengths was then investigated. Besides, the pullout load was expressed as a function of the shear crack lengths. Then the maximum load and the corresponding critical crack lengths were obtained by using the theories of extremum. Finally, a series of material, structural, and interfacial parameters were adopted to study their influences on the calculated results using the proposed method, including the critical crack lengths, initial cracking load and maximum pullout load. It was found that the initial cracking and maximum loads in Boundary 1 are larger than those in Boundary 2. However, as the longitudinal rigidity of the concrete increases, the values of the maximum pullout loads in both of the boundary conditions approach each other. It was also found that there exists an effective bonding length, beyond which the critical crack length and maximum pullout load are no longer increased.
    publisherAmerican Society of Civil Engineers
    titleAnalytical Method for Pullout of Anchor from Anchor–Mortar–Concrete Anchorage System due to Shear Failure of Mortar
    typeJournal Paper
    journal volume133
    journal issue12
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2007)133:12(1352)
    treeJournal of Engineering Mechanics:;2007:;Volume ( 133 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian