YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Free Vibration Analysis of Multiphase Piezocomposite Structures

    Source: Journal of Engineering Mechanics:;2006:;Volume ( 132 ):;issue: 008
    Author:
    Mohammad T. Kamali
    ,
    Hossein M. Shodja
    DOI: 10.1061/(ASCE)0733-9399(2006)132:8(871)
    Publisher: American Society of Civil Engineers
    Abstract: Based on Hamilton’s principle, a three-dimensional semianalytical method for the analysis of free vibration of a structure composed of piezoelectric and elastic materials is developed. Computations of dynamical behavior including natural frequencies, and mode shapes are of interest. In this approach, the mechanical displacement and electric potential functions, in each region, are expressed as products of a three-dimensional (3D) base function and a 3D polynomial with unknown coefficients. The base functions over every domain are constructed with respect to the kinematical boundary conditions, geometry of the structure, and the geometry of that domain. These base functions satisfy the necessary continuities in the displacement field and electric potential at the interfaces, and at the same time accounting for possible discontinuities in their derivatives at the interfaces. The mode shapes will be decomposed in accordance to the presence of any symmetry plane. The robustness of the proposed approach is demonstrated through comparison with the finite element method as applied to the following problems: (1) A perforated thick plate made of piezoelectric and elastic layers and (2) an elastic plate containing a hole, whose exact solution is available. For the latter problem, the result of the present study is in good agreement with the exact solution. Also, an example of a thick PZT plate containing an elastic inclusion with a complex interface, and various types of boundary conditions is considered.
    • Download: (1.011Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Free Vibration Analysis of Multiphase Piezocomposite Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/86295
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorMohammad T. Kamali
    contributor authorHossein M. Shodja
    date accessioned2017-05-08T22:40:57Z
    date available2017-05-08T22:40:57Z
    date copyrightAugust 2006
    date issued2006
    identifier other%28asce%290733-9399%282006%29132%3A8%28871%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/86295
    description abstractBased on Hamilton’s principle, a three-dimensional semianalytical method for the analysis of free vibration of a structure composed of piezoelectric and elastic materials is developed. Computations of dynamical behavior including natural frequencies, and mode shapes are of interest. In this approach, the mechanical displacement and electric potential functions, in each region, are expressed as products of a three-dimensional (3D) base function and a 3D polynomial with unknown coefficients. The base functions over every domain are constructed with respect to the kinematical boundary conditions, geometry of the structure, and the geometry of that domain. These base functions satisfy the necessary continuities in the displacement field and electric potential at the interfaces, and at the same time accounting for possible discontinuities in their derivatives at the interfaces. The mode shapes will be decomposed in accordance to the presence of any symmetry plane. The robustness of the proposed approach is demonstrated through comparison with the finite element method as applied to the following problems: (1) A perforated thick plate made of piezoelectric and elastic layers and (2) an elastic plate containing a hole, whose exact solution is available. For the latter problem, the result of the present study is in good agreement with the exact solution. Also, an example of a thick PZT plate containing an elastic inclusion with a complex interface, and various types of boundary conditions is considered.
    publisherAmerican Society of Civil Engineers
    titleThree-Dimensional Free Vibration Analysis of Multiphase Piezocomposite Structures
    typeJournal Paper
    journal volume132
    journal issue8
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2006)132:8(871)
    treeJournal of Engineering Mechanics:;2006:;Volume ( 132 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian