YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Closely Spaced Roots and Defectiveness in Second-Order Systems

    Source: Journal of Engineering Mechanics:;2005:;Volume ( 131 ):;issue: 003
    Author:
    Dionisio Bernal
    DOI: 10.1061/(ASCE)0733-9399(2005)131:3(276)
    Publisher: American Society of Civil Engineers
    Abstract: When two closely spaced eigenvalues merge the associated eigenvectors can either (1) form a subspace where every vector in the span is an eigenvector or (2) coalesce into a single eigenvector. In the second alternative the repeated eigenvalue is associated with a bifurcation point in the eigenvector space and the system is said to be defective. In defective systems a set of coordinates that uncouple the dynamics does not exist and the closest thing possible is the basis of eigenvectors and generalized eigenvectors (sometimes called power vectors) that lead to the Jordan form. Although true defectiveness does not occur in practice, because eigenvalues are never exactly repeated, one anticipates that the features associated with defective conditions will have a bearing on the behavior of systems that are perturbed versions of defective ones. In viscously damped second order systems with symmetric matrices the potential for defectiveness is determined by the structure of the damping. This paper focuses on identification of conditions connecting the damping matrix with defectiveness. A numerical example of a two degree-of-freedom system that varies from being classically damped, to nonclassical, to defective, depending on the position of a dashpot, is used to illustrate the features of the eigensolution as defectiveness is approached.
    • Download: (90.95Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Closely Spaced Roots and Defectiveness in Second-Order Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/86062
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorDionisio Bernal
    date accessioned2017-05-08T22:40:35Z
    date available2017-05-08T22:40:35Z
    date copyrightMarch 2005
    date issued2005
    identifier other%28asce%290733-9399%282005%29131%3A3%28276%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/86062
    description abstractWhen two closely spaced eigenvalues merge the associated eigenvectors can either (1) form a subspace where every vector in the span is an eigenvector or (2) coalesce into a single eigenvector. In the second alternative the repeated eigenvalue is associated with a bifurcation point in the eigenvector space and the system is said to be defective. In defective systems a set of coordinates that uncouple the dynamics does not exist and the closest thing possible is the basis of eigenvectors and generalized eigenvectors (sometimes called power vectors) that lead to the Jordan form. Although true defectiveness does not occur in practice, because eigenvalues are never exactly repeated, one anticipates that the features associated with defective conditions will have a bearing on the behavior of systems that are perturbed versions of defective ones. In viscously damped second order systems with symmetric matrices the potential for defectiveness is determined by the structure of the damping. This paper focuses on identification of conditions connecting the damping matrix with defectiveness. A numerical example of a two degree-of-freedom system that varies from being classically damped, to nonclassical, to defective, depending on the position of a dashpot, is used to illustrate the features of the eigensolution as defectiveness is approached.
    publisherAmerican Society of Civil Engineers
    titleClosely Spaced Roots and Defectiveness in Second-Order Systems
    typeJournal Paper
    journal volume131
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2005)131:3(276)
    treeJournal of Engineering Mechanics:;2005:;Volume ( 131 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian