YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Description and Simulation of Nonstationary Processes Based on Hilbert Spectra

    Source: Journal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 008
    Author:
    Y. K. Wen
    ,
    Ping Gu
    DOI: 10.1061/(ASCE)0733-9399(2004)130:8(942)
    Publisher: American Society of Civil Engineers
    Abstract: A new method is proposed for the description and simulation of nonstationary random processes based on Hilbert spectra of their sample observations. A sample of a random process is first decomposed into intrinsic mode functions (IMFs) by the method of empirical mode decomposition. The Hilbert transforms of the IMFs yield the instantaneous amplitude and frequency, from which the Hilbert spectrum can be obtained as a function of time and frequency. The average of the Hilbert spectra over the samples is then defined as the Hilbert spectrum of the process and used as the target in the simulation of the process. The method is also extended to vector random processes. Unlike current procedures such as those based on the evolutionary process, no assumptions of functional forms for the spectra are necessary which are unknown a priori; and no assumptions of piecewise stationarity and egodicity of the process are required in parameter estimation. Applications to spectral characterization and simulation of multivariate earthquake ground motions show that the Hilbert spectra give a clear description of the time-varying spectral content of the motions and the simulated samples represent an accurate statistical image of the records. The response spectra compare well with those of the records and retain the jagged look. The method has great potential for engineering applications when dealing with nonstationary, nonlinear random processes.
    • Download: (393.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Description and Simulation of Nonstationary Processes Based on Hilbert Spectra

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/85964
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorY. K. Wen
    contributor authorPing Gu
    date accessioned2017-05-08T22:40:26Z
    date available2017-05-08T22:40:26Z
    date copyrightAugust 2004
    date issued2004
    identifier other%28asce%290733-9399%282004%29130%3A8%28942%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/85964
    description abstractA new method is proposed for the description and simulation of nonstationary random processes based on Hilbert spectra of their sample observations. A sample of a random process is first decomposed into intrinsic mode functions (IMFs) by the method of empirical mode decomposition. The Hilbert transforms of the IMFs yield the instantaneous amplitude and frequency, from which the Hilbert spectrum can be obtained as a function of time and frequency. The average of the Hilbert spectra over the samples is then defined as the Hilbert spectrum of the process and used as the target in the simulation of the process. The method is also extended to vector random processes. Unlike current procedures such as those based on the evolutionary process, no assumptions of functional forms for the spectra are necessary which are unknown a priori; and no assumptions of piecewise stationarity and egodicity of the process are required in parameter estimation. Applications to spectral characterization and simulation of multivariate earthquake ground motions show that the Hilbert spectra give a clear description of the time-varying spectral content of the motions and the simulated samples represent an accurate statistical image of the records. The response spectra compare well with those of the records and retain the jagged look. The method has great potential for engineering applications when dealing with nonstationary, nonlinear random processes.
    publisherAmerican Society of Civil Engineers
    titleDescription and Simulation of Nonstationary Processes Based on Hilbert Spectra
    typeJournal Paper
    journal volume130
    journal issue8
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2004)130:8(942)
    treeJournal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian