YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Frequency Response of Flag-Shaped Single Degree-of-Freedom Hysteretic Systems

    Source: Journal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 008
    Author:
    Constantin Christopoulos
    DOI: 10.1061/(ASCE)0733-9399(2004)130:8(894)
    Publisher: American Society of Civil Engineers
    Abstract: Recognizing the importance of limiting residual deformations that are usually associated with the response of full hysteretic systems under seismic loading, a number of energy dissipating devices and innovative structural systems exhibiting a full recentering response have recently been developed. Although these systems encompass the highly desirable self-centering characteristic, they inherently have less energy dissipation capacity when compared to more traditional fuller hysteretic systems. Little information is available on the nonlinear dynamics of systems exhibiting this flag-shaped hysteresis. In this paper, the frequency response of single degree of freedom (SDOF) systems exhibiting the flag-shaped hysteresis is computed in a closed form using the method of slowly varying parameters. The solution is derived for two independent variables representing the postyielding stiffness and energy dissipation capacity that define all self-centering hysteretic systems. The hysteretic systems covered by this formulation range from bilinear elastic systems (with no energy dissipation) to full bilinear elastoplastic. The frequency response exhibits a softening branch with multiple solution regions. A relationship between the system properties and bounded response at resonance for a given amplitude of excitation is also derived. Further analysis is carried out to assess the stability of these multiple solution regions. It is found that both stable solution branches can be achieved depending on the nature of the excitation. An amplitude jump phenomenon is also present both in increasing frequency and decreasing frequency sweeps. The concept of theoretical versus likely response curve is discussed for less idealized excitation functions.
    • Download: (179.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Frequency Response of Flag-Shaped Single Degree-of-Freedom Hysteretic Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/85959
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorConstantin Christopoulos
    date accessioned2017-05-08T22:40:26Z
    date available2017-05-08T22:40:26Z
    date copyrightAugust 2004
    date issued2004
    identifier other%28asce%290733-9399%282004%29130%3A8%28894%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/85959
    description abstractRecognizing the importance of limiting residual deformations that are usually associated with the response of full hysteretic systems under seismic loading, a number of energy dissipating devices and innovative structural systems exhibiting a full recentering response have recently been developed. Although these systems encompass the highly desirable self-centering characteristic, they inherently have less energy dissipation capacity when compared to more traditional fuller hysteretic systems. Little information is available on the nonlinear dynamics of systems exhibiting this flag-shaped hysteresis. In this paper, the frequency response of single degree of freedom (SDOF) systems exhibiting the flag-shaped hysteresis is computed in a closed form using the method of slowly varying parameters. The solution is derived for two independent variables representing the postyielding stiffness and energy dissipation capacity that define all self-centering hysteretic systems. The hysteretic systems covered by this formulation range from bilinear elastic systems (with no energy dissipation) to full bilinear elastoplastic. The frequency response exhibits a softening branch with multiple solution regions. A relationship between the system properties and bounded response at resonance for a given amplitude of excitation is also derived. Further analysis is carried out to assess the stability of these multiple solution regions. It is found that both stable solution branches can be achieved depending on the nature of the excitation. An amplitude jump phenomenon is also present both in increasing frequency and decreasing frequency sweeps. The concept of theoretical versus likely response curve is discussed for less idealized excitation functions.
    publisherAmerican Society of Civil Engineers
    titleFrequency Response of Flag-Shaped Single Degree-of-Freedom Hysteretic Systems
    typeJournal Paper
    journal volume130
    journal issue8
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2004)130:8(894)
    treeJournal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian