YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stress Dilatancy and Fabric Dependencies on Sand Behavior

    Source: Journal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 006
    Author:
    Richard G. Wan
    ,
    Pei J. Guo
    DOI: 10.1061/(ASCE)0733-9399(2004)130:6(635)
    Publisher: American Society of Civil Engineers
    Abstract: A stress dilatancy model with embedded microstructural information, originally developed by the writers, is used to illustrate the pivotal importance of dilatancy and fabric on the behavior of sand. Fabric, as a second-order tensor, enters into the stress dilatancy equation obtained from a microscopic analysis of an ensemble of rigid particles. Model simulations of sand behavior are carried out in triaxial stress conditions along strain paths with varying degrees of controlled dilation (or compaction) including isochoric deformations as a particular case. Under particular strain paths and fabric conditions, it is shown that a relatively dense sand can succumb to instability or liquefaction under other than isochoric (undrained) conditions. This phenomenon is in accord with laboratory experiments in which dilation or compaction is controlled by modulating the amount of water flowing in or out of a sand specimen during shearing. Mixed drained–undrained loading paths are also simulated with particular reference to fabric dependence at a fixed void ratio. Model simulations capture most of the observed characteristics of sand response, such as instability and asymptotic behavior under various conditions.
    • Download: (229.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stress Dilatancy and Fabric Dependencies on Sand Behavior

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/85929
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorRichard G. Wan
    contributor authorPei J. Guo
    date accessioned2017-05-08T22:40:24Z
    date available2017-05-08T22:40:24Z
    date copyrightJune 2004
    date issued2004
    identifier other%28asce%290733-9399%282004%29130%3A6%28635%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/85929
    description abstractA stress dilatancy model with embedded microstructural information, originally developed by the writers, is used to illustrate the pivotal importance of dilatancy and fabric on the behavior of sand. Fabric, as a second-order tensor, enters into the stress dilatancy equation obtained from a microscopic analysis of an ensemble of rigid particles. Model simulations of sand behavior are carried out in triaxial stress conditions along strain paths with varying degrees of controlled dilation (or compaction) including isochoric deformations as a particular case. Under particular strain paths and fabric conditions, it is shown that a relatively dense sand can succumb to instability or liquefaction under other than isochoric (undrained) conditions. This phenomenon is in accord with laboratory experiments in which dilation or compaction is controlled by modulating the amount of water flowing in or out of a sand specimen during shearing. Mixed drained–undrained loading paths are also simulated with particular reference to fabric dependence at a fixed void ratio. Model simulations capture most of the observed characteristics of sand response, such as instability and asymptotic behavior under various conditions.
    publisherAmerican Society of Civil Engineers
    titleStress Dilatancy and Fabric Dependencies on Sand Behavior
    typeJournal Paper
    journal volume130
    journal issue6
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2004)130:6(635)
    treeJournal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian