YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vibration Control of Wind-Excited Tall Buildings Using Sliding Mode Fuzzy Control

    Source: Journal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 004
    Author:
    Saang Bum Kim
    ,
    Chung-Bang Yun
    ,
    B. F. Spencer, Jr.
    DOI: 10.1061/(ASCE)0733-9399(2004)130:4(505)
    Publisher: American Society of Civil Engineers
    Abstract: A sliding mode fuzzy control (SMFC) is proposed to design a controller for the third-generation benchmark problem on wind-excited buildings. A distinctive feature in vibration control of large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure; however, they cannot be precisely measured, especially for the case of wind excitations. Since the structural accelerations are measured only at a limited number of locations without the measurement of the wind forces, the structure of the conventional control may have the feedback loop only. The general structure of the SMFC, proposed herein, is composed of a compensation part and a convergent part. The compensation part prevents the system from diverging, and the convergent part directs the system to the sliding surface. The compensation part uses not only the structural response measurement but also the disturbance measurement, so the SMFC has a feedback loop and a feedforward loop. To realize the virtual feedforward loop for the wind-induced vibration control, a disturbance estimation filter is introduced. The structure of the filter is constructed based on an autoregressive model for the stochastic wind force. This filter estimates the wind force at each time instance based on the measured structural responses and the stochastic information of the wind force. For verification of the proposed algorithm, numerical simulation is carried out on the benchmark problem for wind-excited buildings. The results indicate that the present control algorithm is efficient for reducing the wind-induced vibration.
    • Download: (141.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vibration Control of Wind-Excited Tall Buildings Using Sliding Mode Fuzzy Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/85915
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorSaang Bum Kim
    contributor authorChung-Bang Yun
    contributor authorB. F. Spencer, Jr.
    date accessioned2017-05-08T22:40:23Z
    date available2017-05-08T22:40:23Z
    date copyrightApril 2004
    date issued2004
    identifier other%28asce%290733-9399%282004%29130%3A4%28505%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/85915
    description abstractA sliding mode fuzzy control (SMFC) is proposed to design a controller for the third-generation benchmark problem on wind-excited buildings. A distinctive feature in vibration control of large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure; however, they cannot be precisely measured, especially for the case of wind excitations. Since the structural accelerations are measured only at a limited number of locations without the measurement of the wind forces, the structure of the conventional control may have the feedback loop only. The general structure of the SMFC, proposed herein, is composed of a compensation part and a convergent part. The compensation part prevents the system from diverging, and the convergent part directs the system to the sliding surface. The compensation part uses not only the structural response measurement but also the disturbance measurement, so the SMFC has a feedback loop and a feedforward loop. To realize the virtual feedforward loop for the wind-induced vibration control, a disturbance estimation filter is introduced. The structure of the filter is constructed based on an autoregressive model for the stochastic wind force. This filter estimates the wind force at each time instance based on the measured structural responses and the stochastic information of the wind force. For verification of the proposed algorithm, numerical simulation is carried out on the benchmark problem for wind-excited buildings. The results indicate that the present control algorithm is efficient for reducing the wind-induced vibration.
    publisherAmerican Society of Civil Engineers
    titleVibration Control of Wind-Excited Tall Buildings Using Sliding Mode Fuzzy Control
    typeJournal Paper
    journal volume130
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2004)130:4(505)
    treeJournal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian