YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wind Response Control of Building with Variable Stiffness Tuned Mass Damper Using Empirical Mode Decomposition/Hilbert Transform

    Source: Journal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 004
    Author:
    Nadathur Varadarajan
    ,
    Satish Nagarajaiah
    DOI: 10.1061/(ASCE)0733-9399(2004)130:4(451)
    Publisher: American Society of Civil Engineers
    Abstract: The effectiveness of a novel semiactive variable stiffness-tuned mass damper (SAIVS-TMD) for the response control of a wind-excited tall benchmark building is investigated in this study. The benchmark building considered is a proposed 76-story concrete office tower in Melbourne, Australia. It is a slender building 306 m tall with a height to width ratio of 7.3; hence, it is wind sensitive. Across wind load data from wind tunnel tests are used in the present study. The objective of this study is to evaluate the new SAIVS-TMD system, that has the distinct advantage of continuously retuning its frequency due to real time control and is robust to changes in building stiffness and damping. In comparison, the passive tuned mass damper (TMD) can only be tuned to a fixed frequency. A time varying analytical model of the tall building with the SAIVS-TMD is developed. The frequency tuning of the SAIVS-TMD is achieved based on empirical mode decomposition and Hilbert transform instantaneous frequency algorithm developed by the writers. It is shown that the SAIVS-TMD can reduce the structural response substantially, when compared to the uncontrolled case, and it can reduce the response further when compared to the case with TMD. Additionally, it is shown the SAIVS-TMD reduces response even when the building stiffness changes by ±15% and is robust; whereas, the TMD loses its effectiveness under such building stiffness variations. It is also shown that SAIVS-TMD can reduce the response similar to an active TMD; however, with an order of magnitude less power consumption.
    • Download: (338.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wind Response Control of Building with Variable Stiffness Tuned Mass Damper Using Empirical Mode Decomposition/Hilbert Transform

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/85906
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorNadathur Varadarajan
    contributor authorSatish Nagarajaiah
    date accessioned2017-05-08T22:40:22Z
    date available2017-05-08T22:40:22Z
    date copyrightApril 2004
    date issued2004
    identifier other%28asce%290733-9399%282004%29130%3A4%28451%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/85906
    description abstractThe effectiveness of a novel semiactive variable stiffness-tuned mass damper (SAIVS-TMD) for the response control of a wind-excited tall benchmark building is investigated in this study. The benchmark building considered is a proposed 76-story concrete office tower in Melbourne, Australia. It is a slender building 306 m tall with a height to width ratio of 7.3; hence, it is wind sensitive. Across wind load data from wind tunnel tests are used in the present study. The objective of this study is to evaluate the new SAIVS-TMD system, that has the distinct advantage of continuously retuning its frequency due to real time control and is robust to changes in building stiffness and damping. In comparison, the passive tuned mass damper (TMD) can only be tuned to a fixed frequency. A time varying analytical model of the tall building with the SAIVS-TMD is developed. The frequency tuning of the SAIVS-TMD is achieved based on empirical mode decomposition and Hilbert transform instantaneous frequency algorithm developed by the writers. It is shown that the SAIVS-TMD can reduce the structural response substantially, when compared to the uncontrolled case, and it can reduce the response further when compared to the case with TMD. Additionally, it is shown the SAIVS-TMD reduces response even when the building stiffness changes by ±15% and is robust; whereas, the TMD loses its effectiveness under such building stiffness variations. It is also shown that SAIVS-TMD can reduce the response similar to an active TMD; however, with an order of magnitude less power consumption.
    publisherAmerican Society of Civil Engineers
    titleWind Response Control of Building with Variable Stiffness Tuned Mass Damper Using Empirical Mode Decomposition/Hilbert Transform
    typeJournal Paper
    journal volume130
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2004)130:4(451)
    treeJournal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian