contributor author | E. A. Johnson | |
contributor author | H. F. Lam | |
contributor author | L. S. Katafygiotis | |
contributor author | J. L. Beck | |
date accessioned | 2017-05-08T22:40:13Z | |
date available | 2017-05-08T22:40:13Z | |
date copyright | January 2004 | |
date issued | 2004 | |
identifier other | %28asce%290733-9399%282004%29130%3A1%283%29.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/85812 | |
description abstract | Structural health monitoring (SHM) is a promising field with widespread application in civil engineering. Structural health monitoring has the potential to make structures safer by observing both long-term structural changes and immediate postdisaster damage. However, the many SHM studies in the literature apply different monitoring methods to different structures, making side-by-side comparison of the methods difficult. This paper details the first phase in a benchmark SHM problem organized under the auspices of the IASC–ASCE Structural Health Monitoring Task Group. The scale-model structure adopted for use in this benchmark problem is described. Then, two analytical models based on the structure—one a 12 degree of freedom (DOF) shear-building model, the other a 120-DOF model, both finite element based—are given. The damage patterns to be identified are listed as well as the types and number of sensors, magnitude of sensor noise, and so forth. | |
publisher | American Society of Civil Engineers | |
title | Phase I IASC-ASCE Structural Health Monitoring Benchmark Problem Using Simulated Data | |
type | Journal Paper | |
journal volume | 130 | |
journal issue | 1 | |
journal title | Journal of Engineering Mechanics | |
identifier doi | 10.1061/(ASCE)0733-9399(2004)130:1(3) | |
tree | Journal of Engineering Mechanics:;2004:;Volume ( 130 ):;issue: 001 | |
contenttype | Fulltext | |