YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Postbuckling of Pressure-Loaded Functionally Graded Cylindrical Panels in Thermal Environments

    Source: Journal of Engineering Mechanics:;2003:;Volume ( 129 ):;issue: 004
    Author:
    Hui-Shen Shen
    ,
    Andrew Y. T. Leung
    DOI: 10.1061/(ASCE)0733-9399(2003)129:4(414)
    Publisher: American Society of Civil Engineers
    Abstract: A postbuckling analysis is presented for a functionally graded cylindrical panel of finite length subjected to lateral pressure in thermal environments. Material properties are assumed to be temperature dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded cylindrical panel are based on Reddy’s higher-order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity and include thermal effects. The two straight edges of the panel are assumed to be simply supported and two curved edges are either simply supported or clamped. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflection in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical panels. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of simply supported, pressure-loaded, perfect and imperfect, functionally graded cylindrical panels with two constituent materials under different sets of thermal environments. The influences played by temperature rise, volume fraction distributions, transverse shear deformation, panel geometric parameters, as well as initial geometric imperfections, are studied.
    • Download: (178.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Postbuckling of Pressure-Loaded Functionally Graded Cylindrical Panels in Thermal Environments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/85719
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorHui-Shen Shen
    contributor authorAndrew Y. T. Leung
    date accessioned2017-05-08T22:40:02Z
    date available2017-05-08T22:40:02Z
    date copyrightApril 2003
    date issued2003
    identifier other%28asce%290733-9399%282003%29129%3A4%28414%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/85719
    description abstractA postbuckling analysis is presented for a functionally graded cylindrical panel of finite length subjected to lateral pressure in thermal environments. Material properties are assumed to be temperature dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded cylindrical panel are based on Reddy’s higher-order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity and include thermal effects. The two straight edges of the panel are assumed to be simply supported and two curved edges are either simply supported or clamped. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflection in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical panels. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of simply supported, pressure-loaded, perfect and imperfect, functionally graded cylindrical panels with two constituent materials under different sets of thermal environments. The influences played by temperature rise, volume fraction distributions, transverse shear deformation, panel geometric parameters, as well as initial geometric imperfections, are studied.
    publisherAmerican Society of Civil Engineers
    titlePostbuckling of Pressure-Loaded Functionally Graded Cylindrical Panels in Thermal Environments
    typeJournal Paper
    journal volume129
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2003)129:4(414)
    treeJournal of Engineering Mechanics:;2003:;Volume ( 129 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian