YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Analysis of Multiple Damage Mechanisms Coupled with Inelastic Behavior of Composite Materials

    Source: Journal of Engineering Mechanics:;2001:;Volume ( 127 ):;issue: 007
    Author:
    George Z. Voyiadjis
    ,
    Babur Deliktas
    ,
    Elias C. Aifantis
    DOI: 10.1061/(ASCE)0733-9399(2001)127:7(636)
    Publisher: American Society of Civil Engineers
    Abstract: Thermodynamically consistent constitutive equations are derived here in order to investigate size effects on the strength of composite, strain, and damage localization effects on the macroscopic response of the composite, and statistical inhomogeneity of the evolution-related damage variables associated with the representative volume element. This approach is based on a gradient-dependent theory of plasticity and damage over multiple scales that incorporates mesoscale interstate variables and their higher order gradients at both the macro- and mesoscales. This theory provides the bridging of length scales. The interaction of the length scales is a paramount factor in understanding and controlling material defects such as dislocation, voids, and cracks at the mesoscale and interpreting them at the macroscale. The behavior of these defects is captured not only individually, but also the interaction between them and their ability to create spatiotemporal patterns under different loading conditions. The proposed work introduces gradients at both the meso- and macroscales. The combined coupled concept of introducing gradients at the mesoscale and the macroscale enables one to address two issues simultaneously. The mesoscale gradients allow one to address issues such as lack of statistical homogeneous state variables at the macroscale level such as debonding of fibers in composite materials, cracks, voids, and so forth. On the other hand, the macroscale gradients allow one to address nonlocal behavior of materials and interpret the collective behavior of defects such as dislocations and cracks. The capability of the proposed model is to properly simulate the size-dependent behavior of the materials together with the localization problem. Consequently, the boundary-value problem of a standard continuum model remains well-posed even in the softening regime. The enhanced gradient continuum results in additional partial differential equations that are satisfied in a weak form. Additional nodal degrees of freedom are introduced that leads to a modified finite-element formulation. The governing equations can be linearized consistently and solved within the incremental iterative Newton-Raphson solution procedure.
    • Download: (130.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Analysis of Multiple Damage Mechanisms Coupled with Inelastic Behavior of Composite Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/85400
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorGeorge Z. Voyiadjis
    contributor authorBabur Deliktas
    contributor authorElias C. Aifantis
    date accessioned2017-05-08T22:39:35Z
    date available2017-05-08T22:39:35Z
    date copyrightJuly 2001
    date issued2001
    identifier other%28asce%290733-9399%282001%29127%3A7%28636%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/85400
    description abstractThermodynamically consistent constitutive equations are derived here in order to investigate size effects on the strength of composite, strain, and damage localization effects on the macroscopic response of the composite, and statistical inhomogeneity of the evolution-related damage variables associated with the representative volume element. This approach is based on a gradient-dependent theory of plasticity and damage over multiple scales that incorporates mesoscale interstate variables and their higher order gradients at both the macro- and mesoscales. This theory provides the bridging of length scales. The interaction of the length scales is a paramount factor in understanding and controlling material defects such as dislocation, voids, and cracks at the mesoscale and interpreting them at the macroscale. The behavior of these defects is captured not only individually, but also the interaction between them and their ability to create spatiotemporal patterns under different loading conditions. The proposed work introduces gradients at both the meso- and macroscales. The combined coupled concept of introducing gradients at the mesoscale and the macroscale enables one to address two issues simultaneously. The mesoscale gradients allow one to address issues such as lack of statistical homogeneous state variables at the macroscale level such as debonding of fibers in composite materials, cracks, voids, and so forth. On the other hand, the macroscale gradients allow one to address nonlocal behavior of materials and interpret the collective behavior of defects such as dislocations and cracks. The capability of the proposed model is to properly simulate the size-dependent behavior of the materials together with the localization problem. Consequently, the boundary-value problem of a standard continuum model remains well-posed even in the softening regime. The enhanced gradient continuum results in additional partial differential equations that are satisfied in a weak form. Additional nodal degrees of freedom are introduced that leads to a modified finite-element formulation. The governing equations can be linearized consistently and solved within the incremental iterative Newton-Raphson solution procedure.
    publisherAmerican Society of Civil Engineers
    titleMultiscale Analysis of Multiple Damage Mechanisms Coupled with Inelastic Behavior of Composite Materials
    typeJournal Paper
    journal volume127
    journal issue7
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2001)127:7(636)
    treeJournal of Engineering Mechanics:;2001:;Volume ( 127 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian