YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experiments on Vertical Turbulent Plane Jets in Water of Finite Depth

    Source: Journal of Engineering Mechanics:;2001:;Volume ( 127 ):;issue: 001
    Author:
    Jun Kuang
    ,
    Chin-Tsau Hsu
    ,
    Huihe Qiu
    DOI: 10.1061/(ASCE)0733-9399(2001)127:1(18)
    Publisher: American Society of Civil Engineers
    Abstract: Detailed experiments on vertical turbulent plane jets in water of finite depth were carried out in a two-dimensional water tank. The jet velocities were measured with a laser Doppler velocimeter (LDV). The LDV measurement covers the entire flow regime: the zone of flow establishment (ZFE), the zone of established flow (ZEF), the zone of surface impingement (ZSI), and the zone of horizontal jets (ZHJ). From the experimental results, the following conclusions are reached. First, the jet flow is independent of the Reynolds number if the Reynolds number is sufficiently large to produce a turbulent jet. Second, in the initial ZFE, the jet flow is nonsimilar and is characterized by the two free shear layers along the two edges of the jet orifice. Third, the jet flow in ZEF is self-similar. Both mean and fluctuation velocities are scaled with the mean jet centerline velocity. The turbulent shear stress is predictable by Prandtl's third eddy viscosity model. The spreading of the confined vertical jets is larger than that of a free jet, so is the faster decay of jet centerline velocity. Fourth, in ZSI the jet flow is nonsimilar and high turbulent intensities were found. The vertical turbulent jet transforms into two opposite horizontal surface jets after the impingement. And finally, the maximum velocity of the horizontal surface jet in ZHJ decays according to a power law.
    • Download: (176.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experiments on Vertical Turbulent Plane Jets in Water of Finite Depth

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/85269
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorJun Kuang
    contributor authorChin-Tsau Hsu
    contributor authorHuihe Qiu
    date accessioned2017-05-08T22:39:23Z
    date available2017-05-08T22:39:23Z
    date copyrightJanuary 2001
    date issued2001
    identifier other%28asce%290733-9399%282001%29127%3A1%2818%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/85269
    description abstractDetailed experiments on vertical turbulent plane jets in water of finite depth were carried out in a two-dimensional water tank. The jet velocities were measured with a laser Doppler velocimeter (LDV). The LDV measurement covers the entire flow regime: the zone of flow establishment (ZFE), the zone of established flow (ZEF), the zone of surface impingement (ZSI), and the zone of horizontal jets (ZHJ). From the experimental results, the following conclusions are reached. First, the jet flow is independent of the Reynolds number if the Reynolds number is sufficiently large to produce a turbulent jet. Second, in the initial ZFE, the jet flow is nonsimilar and is characterized by the two free shear layers along the two edges of the jet orifice. Third, the jet flow in ZEF is self-similar. Both mean and fluctuation velocities are scaled with the mean jet centerline velocity. The turbulent shear stress is predictable by Prandtl's third eddy viscosity model. The spreading of the confined vertical jets is larger than that of a free jet, so is the faster decay of jet centerline velocity. Fourth, in ZSI the jet flow is nonsimilar and high turbulent intensities were found. The vertical turbulent jet transforms into two opposite horizontal surface jets after the impingement. And finally, the maximum velocity of the horizontal surface jet in ZHJ decays according to a power law.
    publisherAmerican Society of Civil Engineers
    titleExperiments on Vertical Turbulent Plane Jets in Water of Finite Depth
    typeJournal Paper
    journal volume127
    journal issue1
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(2001)127:1(18)
    treeJournal of Engineering Mechanics:;2001:;Volume ( 127 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian