YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The “Chunnel” Fire. I: Chemoplastic Softening in Rapidly Heated Concrete

    Source: Journal of Engineering Mechanics:;1999:;Volume ( 125 ):;issue: 003
    Author:
    Franz-Josef Ulm
    ,
    Olivier Coussy
    ,
    Zdeněk P. Bažant
    DOI: 10.1061/(ASCE)0733-9399(1999)125:3(272)
    Publisher: American Society of Civil Engineers
    Abstract: This paper and its companion paper present the main results of an assessment of the fire in the Channel Tunnel (the “Chunnel”), which destroyed a part of the concrete tunnel rings by thermal spalling. The study seeks (1) to evaluate the effect of thermal damage (loss of elastic stiffness) and thermal decohesion (loss of material strength) upon the stress state and cracking at a structural level; and (2) to check whether restrained thermal dilatation can explain the thermal spalling observed during the fire. In the present paper, a macroscopic material model for rapidly heated concrete is developed. It accounts explicitly for the dehydration of concrete and its cross-effects with deformation (chemomechanical couplings) and temperature (chemothermal couplings). The thermal decohesion is considered as chemoplastic softening within the theoretical framework of chemoplasticity. Furthermore, kinetics of dehydration, dimensional analysis, and thermodynamic equilibrium considerations show that a unique thermal dehydration function exists that relates the hydration degree to the temperature rise, provided that the characteristic time of dehydration is much inferior to the characteristic time of structural heat conduction. The experimental determination of the thermal dehydration function from in-situ measurements of the elastic modulus versus furnace temperature rise is shown from experimental data available from the chunnel concrete. Finally, by way of an example, the proposed constitutive model for rapidly heated concrete is combined with the three-parameter William-Warnke criterion extended to isotropic chemoplastic softening.
    • Download: (282.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The “Chunnel” Fire. I: Chemoplastic Softening in Rapidly Heated Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/84950
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorFranz-Josef Ulm
    contributor authorOlivier Coussy
    contributor authorZdeněk P. Bažant
    date accessioned2017-05-08T22:38:52Z
    date available2017-05-08T22:38:52Z
    date copyrightMarch 1999
    date issued1999
    identifier other%28asce%290733-9399%281999%29125%3A3%28272%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/84950
    description abstractThis paper and its companion paper present the main results of an assessment of the fire in the Channel Tunnel (the “Chunnel”), which destroyed a part of the concrete tunnel rings by thermal spalling. The study seeks (1) to evaluate the effect of thermal damage (loss of elastic stiffness) and thermal decohesion (loss of material strength) upon the stress state and cracking at a structural level; and (2) to check whether restrained thermal dilatation can explain the thermal spalling observed during the fire. In the present paper, a macroscopic material model for rapidly heated concrete is developed. It accounts explicitly for the dehydration of concrete and its cross-effects with deformation (chemomechanical couplings) and temperature (chemothermal couplings). The thermal decohesion is considered as chemoplastic softening within the theoretical framework of chemoplasticity. Furthermore, kinetics of dehydration, dimensional analysis, and thermodynamic equilibrium considerations show that a unique thermal dehydration function exists that relates the hydration degree to the temperature rise, provided that the characteristic time of dehydration is much inferior to the characteristic time of structural heat conduction. The experimental determination of the thermal dehydration function from in-situ measurements of the elastic modulus versus furnace temperature rise is shown from experimental data available from the chunnel concrete. Finally, by way of an example, the proposed constitutive model for rapidly heated concrete is combined with the three-parameter William-Warnke criterion extended to isotropic chemoplastic softening.
    publisherAmerican Society of Civil Engineers
    titleThe “Chunnel” Fire. I: Chemoplastic Softening in Rapidly Heated Concrete
    typeJournal Paper
    journal volume125
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(1999)125:3(272)
    treeJournal of Engineering Mechanics:;1999:;Volume ( 125 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian